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A Set of Neural Tools for Human-Computer Interactions:
Application to the Handwritten Character Recognition, and
Visual Speech Recognition Problems
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This paper presents a new technique of data coding
and an associated set of homogenous processing
tools for the development of Human Computer Inter-
actions (HCI). The proposed technique facilitates
the fusion of different sensorial modalities and sim-
plifies the implementations. The coding takes into
account the spatio-temporal nature of the signals to
be processed in the framework of a sparse
representation of data. Neural networks adapted to
such a representation of data are proposed to per-
form the recognition tasks. Their development is
illustrated by two examples: one of on-line handwrit-
ten character recognition; and the other of visual
speech recognition.
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1. Introduction

The present means of communication between the
humans and machines are more and more questioned
and criticised. The pocket computer, which has a
certain interest for the general public, has sizes
such that the utilisation of a keyboard or mouse is
unsuitable. Moreover, a broader expansion of the
use of computers is harnessed by the fact that they
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impose the burden of understand and learning the
functioning of the tool on the user. Ideally, it should
be the task of the computer to adapt itself to the
user.

Realisation of HCI, which permits someone to
command all the power of a machine while using
means of communication which are more natural, is
a challenge which occupies a large community of
scientists and technicians. What we propose is to
deal with the problem by adopting a unified
approach at the level of the shaping of the data, as
well as at the level of its processing.

After having identified many characteristics com-
mon to HCI, this paper presents a coding and a
mode of homogenised processing, adapted to the
signals thus characterised. To illustrate this
approach, two examples of applications are
presented.

2. User Interfaces

2.1. Characteristics of Signals in HCI

Variety of signals to be processed.At present there
exist many means of operational inputs for achieving
an intuitive HCI. For example, the stylus for writing
and drawing, the microphone for speech and sound,
the touch screen and the TouchPad for the sense of
touch, and video for the interpretation of gestures,
recognition of facial expression, and analysis of the
movements of the eyes, head and lips.

Characteristics of the signals.The main character-
istic which all these signals have in common is the
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enormous quantity of information they carry. Video
is for the moment the leader in generating high
dimensional data, but it is progressively being joined
by the other systems of acquisition due to the
development of micro-technologies. As an example,
we can cite graphic tablets which are now capable
of producing the level of pressure of the stylus,
and even, for more elaborate versions, its speed,
acceleration and orientation.

The second characteristic shared by these types
of signals reside in the fact that the relevant infor-
mation is contained in the correlation between the
spatial and temporal information. These correlations
must be done and analysed to permit a machine to
extract the essence of the user’s message. These
Spatio-Temporal Patterns (STP) may be simple: like
the case of a rigid object (spatial correlation) which
moves in space (temporal correlation of the object
throughout the duration of a sequence of images).
These may equally be more elaborate: the raising
of an eyebrow or a smile are gestures which may be
interpreted as spatial forms which evolve over time.

Moreover, it is often necessary to produce a
fusion of different sources of signals. Such an oper-
ation brings an improvement in robustness; for
instance, the speech recognition is improved when
we enhance the audio modality by the video signal
of the lips’ movement. This fusion is sometimes
indispensable for understanding the complete mess-
age, for example in the case of an operator giving
a command of the typeput the object thereto a
system equipped with a microphone and a touch
screen.

2.2. Coding and Homogenous Processing

Bio-inspiration. It is natural, in the framework of
HCI, to investigate the manner in which our brain
processes the different sensorial modalities. In
simple terms, we may say that it seems the sensors
(ears, eyes, skin) convert the set of acquired infor-
mation into electrical impulses (isolated impulses,
train of impulses, etc.).

Moreover, after transcoding, it seems that, inde-
pendently of the origin of the signal, the same type
of units process the information: theneuron, if we
may permit ourselves to group under the same name
all the neuronal cells which may have very differ-
ent properties.

Our proposition: A unified approach for the coding
and processing of information.The common
characteristics of the processed signals in HCI nat-
urally point towards a common processing. For this

reason, and also because the brain seems to adopt
the same strategy, we propose to follow a unified
approach, both at the level of the coding of the
information as well as in its processing.

The sparse coding [1] could be the means utilised
by the brain for analysing and memorising the infor-
mation in a fashion which is robust and efficient
[2], and much work has been done in developing
algorithms which permit the coding of signals in
such a manner [3,4]; links with Independent Compo-
nent Analyses and wavelets have been highlighted
[5]. The sparse coding is therefore the coding which
we have retained to work on.

Following such a coding of the signals, we have
developed a set of neural tools which permit recog-
nition of patterns containing spatial and temporal
information. This approach, which unifies, with the
help of a common representation, the data obtained
from different sensors (microphone, video camera,
stylus touch screen) makes their fusion easier. More-
over, it simplifies the implementations. It leads to a
perspective of the development of the system under
the form of a limited program code, functioning in
real time; which is essential for certain systems (eg.
PDAs: Personal Digital Assistants).

3. STANN

The tools we are proposing make up a set of neural
networks [6–11]. We called them STANN (Spatio-
Temporal Artificial Neural Networks). Their main
characteristic is the processing of STP expressed in
the form of impulses. This set of tools belongs to
the domain of work done by several teams for the
introduction of a time factor in the neural networks
field [8,10,12,13]. The STANN combines the poten-
tial of classical artificial neural networks with the
assets of spiking neurons, thus combining the
algebraic properties of the McCulloch & Pitts neuron
and the capabilities of the biological model of Rall
for the recognition of elementary sequences [14].

3.1. Coding of Information

The processed information is represented by
sequences of impulses. It is presented to each calcu-
lating unit in the form of a vector whose components
are complex numbers. The process of converting a
train of impulses into vectors is done in the follow-
ing manner: each impulseI is characterised by its
amplitudeaI0

and the temporal delaydI which separ-
ates the current instant of time from the date at
which the impulse was received by the calculating
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Fig. 1. Impulse coding with complex numbers.

unit. A complex numberzI is associated with the
impulse I. It contains the delaydI as its phasewI,
and the current amplitudeaI as its module.aI is
determined from the initial amplitude of the impulse
aI0

by introducing an attenuation with the passage
of time (short term memory) as shown in Fig. 1:

zI = aIeiwI

with

5aI = aI0
e−mSdI

wI = arctan(mTdI)

where mS and mT are two constants which permits
us to control the characteristics of the short-term
memory of the model.

The composition of the impulses, at the level of
each unit, is done input by input such that it
becomes a complex vector whose number of compo-
nents is equal to the number of inputs (Fig. 2). A
sequence of impulses is thus coded by a vector in
Cn, which is provided with the canonical hermitian
metric, therefore we can calculate the distance
between sequences.

3.2. Units and Architectures

Several types of units have been developed. The
simplest are composed of a single neuron, and the
others are constituted of bigger networks. These
are all autonomous units which communicate in an
asynchronous manner with each other by means of
exchanges of impulses. The units have a continuous

Fig. 2. A sequence of impulses is coded as a complex vector.

dynamic; however, taking into account the impulse
character of the exchanges between the units, an
event-driven implementation seems to be more
efficient. The training algorithms specific to each of
these types of units have been developed.

Simple units. Two types of simple units have been
developed to-date. They are composed of a unique
neuron which at each instant of time compares the
vector coding the input sequence (short-term
memory) with a weight vector (long-term memory).
The weight vector is also complex valued, and it
codes the sequence which the neuron must recog-
nise. Two types of comparison between sequences
(from which the two different types of units ensue)
are retained; one is based on the hermitian scalar
product

v = XT W

X being the input sequence andW the weight
sequence. The other is based on the calculation of
hermitian distance between the two sequences:

d(X,W) = iX − Wi

= Î(X − W)T (X − W)

In the first case, we get from the phase of the
potential v the date at which the unit may produce
an output, and from the module we obtain the
amplitude of the output. This module may be com-
pared, if desired, with a threshold.

In the second case, an impulse of unit amplitude
is produced when the distanced becomes inferior
to a given distance.

The simple units in network.Several architectures
of networks were studied using the simple units
presented above. They are derived from classical
architectures in the domain of artificial neural net-
works. They are:

1. ST-WTA [15]: this is a Spatio-Temporal (ST)
adaptation of the Winner Takes All model, for
which the training is done in an analytic manner
by imposing on each weight vector of each unit
the following constraints:
I It should correspond to the prototype sequence

to be recognised.
I It should be normalised and orthogonalised, in

the output space, with all the other weight
vectors of the network.

2. ST-Kmeans [6,7]: this is a transposition of the
K-means algorithm [16–19] to ST coding in the
complex domain, thus permitting an unsupervised
vector quantification in the space of sequences
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to be done. The training leads to a partitioning
of the space of input sequences into regions,
each being represented by a vector of reference.

3. ST-RCE [6,7]: this is a supervised model in
which the first of the two layers of the evolutive
architecture of Reilly, Cooper and Elbaum [20]
divides the space of the input sequences by
hyperspheres; the second layer regroups the pre-
ceding hyperspheres by class in order to fulfil
the tasks of recognition.

Large units. Units containing several neurons in a
network have also been conceived. They profit from
the possibilities of non-linear separation offered by
the classical artificial neural networks. Each of the
neural parameters is a complex value, with the
ST interpretation given above. However, here the
interactions between the internal neurons are purely
analytic. Only the inputs of the unit are furnished
with impulses (short-term memory at the level of
inputs); the outputs generate impulses as a function
of the thresholds of decision. For some applications
(e.g. classification), a process of decision of type
WTA is added at the level of the output, so that
only one of them produces an impulse during the
recognition task. Here again, several classical archi-
tectures were transposed for a ST exploitation of
data:

1. ST-MLP [9,21]: this model derives from a
version extended to complex numbers of the
Multilayer Perceptron [22], for which the back-
propagation algorithm stays valid by taking cer-
tain precautions.

2. ST-RBF [8]: it is conceived from the commun
Radial Basis Functions (RBF) model, but operates
in an input hermitian space; the second layer
of neurons works with real or complex values,
according to the application (classification or
function approximation).

3. ST-Kohonen [23]: this is a ST version of the
self-organising map of Kohonen, which makes
possible the extraction of topological links in a
sequence space.

3.3. Application

For a given task of HCI recognition, once the raw
signals have been processed by the sparse coder,
the systems which we use are formed of two classi-
cal steps: the first ensures the extraction of charac-
teristics; the second is charged with the task of
classification. The extraction step is aimed at making
the task of the classifier easier and more robust.
The classifier associates a label to a sequence of

impulses. For example, in online handwritten charac-
ter recognition, a chain of elementary lines is recog-
nised as the traced letter.

Extraction of characteristics. The procedure con-
sists of analysing the sequences to be recognised as
a train of elementary sub-sequences. Hence, this
step aims at extracting an alphabet of sub-sequences
with which it is possible to compose the global
sequences (Fig. 3). The extraction may eventually
be done in several stages; certain chains of sub-
sequences hence constituting a dictionary which
serves as the basis for the elaboration of a meta-
dictionary (and so on), until we are able to get the
list of elements which act as the basis for the
classification of the global sequences to be recog-
nised.

For each level of the decomposition, a STANN
(composed of a single layer of ST neurons) ensures
the automatic extraction, by unsupervised training,
of the sequences of elementary impulses represent-
ative of a certain temporal windowTW.1 During
relaxation, when a sequence is recognised by a
neuron, it produces an impulse. The succession of
impulses produced by the STANN is at its turn
processed by the following STANN, which works
on a temporal windowTW9 of a duration larger
than theTW, and so on until the classification of
the global sequences may be done. The STANNs
used here are the ST-Kmeans and ST-Kohonen,
according to the application. Usually, they are both
tried and the best combination is retained.

Classification. Once a sequence is broken into sub-
sequences, the next step is to associate their corre-
sponding class to the sequences of impulses
produced by the last STANN of the previous step.

Fig. 3. Global sequences are analysed as compositions of elemen-
tary sub-sequences.

1 TW corresponds to the duration of the short-term memory of
the neurons. A precise definition is given in Baig [24].
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Another STANN is therefore added to the system.
It is a model functioning with a supervised training.
Both ST-RCE and ST-MLP should be tried. The
performance in terms of recognition and imple-
mentation will decide which is the best.

During elaboration of the system, the improve-
ment in performance of the implementation is done
by limiting the number of layers in the extraction
of characteristics step. Moreover, we sometimes
need to compare the classification and imple-
mentation performance of the following approaches:

I Experiments with none or at least one layer of
extraction of characteristics in step 1 and a ST-
MLP in step 2.

I Experiments based on a system having several
layers of extraction of characteristics, followed
by a simple ST-RCE at the output.

4. Examples

To illustrate the technique which we have presented
above, two example applications are proposed. The
first concerns online handwritten character recog-
nition, and the second is about visual speech recog-
nition, commonly known as lipreading.

4.1. On-line Handwritten Character
Recognition

The drawing of a character is done with a stylus
on a digitising tablet, which sends a series of
elementary displacements to the computer. This
series is first translated in the form of a vectored
sequence of impulses. Then, the recognition task is
done in two steps: (1) an initial layer of ST neurons,
which have the task of detecting certain primitives
(lines) in the strokes; and (2) a ST-MLP which
recognises the characters. While proceeding thus,
we get rid of all kinds of preprocessing which are
necessary for most classic connectionist methods:
filtering, normalisation, resampling, etc. [25,26].

The digitising tablet provides us with coordinates
of the elementary displacement of the stylus. Quite
a few authors transform these stylus elementary
displacement values into a movement in a given
direction out of a limited set. We have adopted the
same technique, which is inspired from the 8-top-
ology of Freeman [27], but we made it simpler in
translating every displacement of the stylus into a
couple of movements, each corresponding to one
of the four basic directions (Fig. 4). Taking these
movements as impulses, the stroke of a character
produces a train of impulses, each one having an

Fig. 4. Decomposition in four directions.

orientation (left, right, up, down), an amplitude
(absolute value of the projected movement) and a
date (at which the elementary displacement occurs)
(Fig. 5).

The first layer is made up of simple ST neurons,
of the first type, presented in Section 3.2 (Simple
units). They have the role of accumulating spikes
in the same direction. If the potential of a given
neuron accumulates enough successive spikes, and
attains a certain threshold, the neuron produces a
spike at its output. This impulse represents the
identification in the stroke of a character of a line
with a certain length in a given direction. Since
every neuron can detect only a particular length, we
have used three neurons (with different thresholds)
for any direction to be able to detect three different
line lengths in all directions (Fig. 6). This separation
between small and large lines facilitates the recog-
nition task by a better identification of the local
characteristics of the characters (it is so, for
example, in the case of loops: Fig. 7).

The second module has to recognise one of the
26 characters of the alphabet from the corresponding
spikes of identified lines in the stroke of the charac-
ter drawn. In this step, a ST-MLP is used (Fig. 8).
To do the training and the tests, we used a multi-
scripter database, developed by the IRISA2, made
up of the handwriting of 14 people.

Fig. 5. Movement acquisition in the form of spikes.

2 Institut de Recherche en Informatique et Syste`mes Aléatoires,
Rennes (35), France.
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Fig. 6. Identification of basic lines.

Fig. 7. Importance of loops in the recognition task.

Fig. 8. Recognition of characters.

In this phase of the test, the quality of recognition
is good but inhomogeneous (between 62% and 100%
of recognition, according to the letters in question).
The confusion observed between certain letters, like
h and k or m and n, corresponds to that made by
the human expert, and it can only be solved by
adding contextual information. The recognition of
words is thus the goal we are currently working on.

For more details on this application, see
Mozayyani [8] or Mozayyani and Vaucher [21].

Fig. 9. A grey level image.

4.2. Visual Speech Recognition

We have also applied our approach to a Visual
Speech Recognition (VSR) task of French digit
recognition. In a continuous effort to built better
man-machine interfaces, many good audio speech
recognition systems have been developed in the past
two decades. However, their performance decreases
rapidly in the presence of noise and cross-talk. To
overcome this defect, researchers have been explor-
ing the incorporation of a visual signal. Some of
the VSR systems developed to-date are discussed
elsewhere [28–32]. Most of them are either intrusive
(colouring lips, head mounted cameras [29], marker
points on the face [32], etc.), or need quite heavy
preprocessing.

Our system consists of a preprocessing module
and two ST neural architectures in cascade. The
preprocessing module implements simple and low
CPU cost techniques to automatically follow the
movement of certain points on the lips of a speaker.
From the movement of these points, which is ST
by nature, speech recognition is carried out by the
neural architectures without using the audio
modality.

Images of the mouth region are acquired by a
video system (Fig. 9). The images are taken in a
common office room, in natural lighting conditions.
The RGB colour images from the video camera are
projected into YUV colour coordinates [33]. For
further processing, we use only the coordinate V,
because the contrast between the lips and the mouth
interior in this coordinate is quite large (Fig. 10).

Fig. 10. Image of V coordinate in the YUV colour space.
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Fig. 11. Accumulated V values for each row.

As visual parameters, relevant for tracking the
lips’ movement, we have chosen four points on the
lips. For finding the position of these points we
make an accumulation of the V values for each row
and each column of the image. The points H1 and
H2 (resp. W1 and W2) are localised on the negative
and positive slopes of the accumulation curve of
the rows on the y-axis (resp. columns on the x-
axis), hence we pass a derivative filter on these
curves, and search for the minimum and maximum
points (Figs 11 and 12).

The coordinates of H1 and H2 (resp. W1 and W2)
on the y-axis (resp. x-axis) are traced throughout the
sequence of images (Fig. 13), and the information
in these sequences is converted into impulse vectors.
For this purpose, only the strongest rate of changes
in the two opposite directions are retained for each
point tracked. A derivative filter applied on the
curve permits us to generate two signals of impulses

Fig. 12. The accumalation curve after the derivate filter.

Fig. 13. Trace of the point H2 for a complete sequence.

per point (Fig. 14). This gives us an eight-component
impulse vector for each image series, which serves
as input to our STANN (Fig. 15).

For the experiments, we have chosen a digit
recognition task with French digits:Zéro, Un, etc.
A spoken digit contains one or more basic lip
movements (sub-sequences of a complete sequence),
and differs from another spoken digit in the order
and presence (or absence) of these sub-sequences.
Accordingly, we have broken the classification pro-
cess of the impulse vector sequences into two parts.
In the first part, we determine the sub-sequences
present in a complete sequence. In the second part,
we classify the complete sequence according to the
presence in the right order of these sub-sequences
(Fig. 16). The impulse vectors, produced by the
preprocessing subsystem, are the input of the first
STANN. The simple ST artificial neurons of this
module are of the second type given in subsection

Fig. 14. Impulse plot of H2 for a complete sequence.
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Fig. 15. Two consecutive sequences:Zéro – Un.

Fig. 16. Two consecutive Spatio-Temporal Artificial Neural Net-
works.

3.2 (Simple units). They have their weights and
thresholds set by the ST-Kmeans technique.

The second module is an ST-RCE architecture.
The number of neurons required and their weights
and thresholds are determined by training, according
to an adaptation of the RCE algorithm [20]. The
output comprises 10 units, one for each digit.

On the recordings of one speaker (male, white,
beardless), the best results obtained in recognition
are 77.6% correct on our testing base. Among the
video-only results reported by others, there is none
in similar conditions which is more than 60% cor-
rect. In Luettin [30], the result reported on the same
task as ours is around 58%, but on a multi-speaker
database. So, our results are quite encouraging, even
if a real benchmarking was not followed, since there
is no such publicly available database.

In the future, we intend to extend our VSR system
to a multi-speaker task. We also wish to make it
completely autonomous by incorporating a face [34]

and lip-tracking module; our purpose is to have a
global system functioning in real-time.

For more details on this application, see Baig
et al. [6,7,24].

2. Conclusion

Following a bio-inspired approach, we have
developed a family of models of neural networks
which processes STPs coded in a unified way. The
interest in such models is shown on two appli-
cations: first on a handwritten character recognition
task; and then on a lipreading problem, both within
the context of HCI.

The performances obtained by our handwritten
recognition system in a task of isolated character
analysis are comparable with those of a human
operator (cf. end of Section 4.1). The absence of
rather heavy preprocessing, as used in other works
[35,36] for respectively removing tremors and dupli-
cated points in the first case, and adding intermediate
points while oversampling in the second case,
reduces the size of the system, which is an asset
for integration into a system such as a PDA.

In the absence of any benchmark in the field of
lipreading, in Section 4.2 we compared the 77%
recognition rate of our system to the 58% rate of
Luettin [30]. This system, which was selected
because it appeared to us to be the closest to ours
at the level of the task realised,3 uses Hidden Mar-
kov Models (HMM) to carry out the recognition,
which leads to rather heavy processing overhead. In
our case, a few seconds on a PC (Pentium III–
550 MHz) is enough for the complete chain from
acquisition to classification to carry out the whole
process, even though the code is not optimised.

Consequently, beyond the rates of recognition
obtained by the two systems presented above,4 we
would wish to underline, in the context of real-time
processing, the performance of the proposed spiking
systems; and to highlight the potentialities offered
by such systems as regards multi-sensory fusion
for the development of multi-modal man-machine
interfaces. To illustrate this, we are currently work-
ing on voice recognition system based on both audio
and video signals. Each source would be converted
into the form of impulses, first processed separately
and then jointly by a multi-network architecture

3 An inventory of the performance of 39 systems is proposed in
Baig [24].
4 Since our experiments in these application domains are still in
progress, we expect to be able to improve the capacities of the
systems presented.
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made up of STANNs. Finally, with an aim of
having an environment adapted to implement these
architectures in real-time, the development of a dedi-
cated dispatcher of impulses is in progress; it will
ensure an efficient scheduling in an asynchronous
mode of the autonomous units which are STANNs.
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