
 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

174

Manuscript received August 5, 2006.
Manuscript revised August 25, 2006.

E-MAP: Efficiently Mining Asynchronous Periodic Patterns

Fahad Maqbool, Shariq Bashir, and A. Rauf Baig

FAST-National University of Computer and Emerging Sciences, Islamabad, Pakistan
A.K. Brohi Road, H-11/4, Islamabad, Pakistan

Summary
Mining periodic patterns in temporal dataset plays an important
role in data mining and knowledge discovery tasks. In this paper,
we propose a novel algorithm E-MAP (Efficient Mining of
Asynchronous Periodic Patterns) for efficient mining of
asynchronous periodic patterns in large temporal datasets. Our
proposed algorithm discovers all maximal complex patterns in a
single step and single scan without mining single event and multi
events patterns. To check the effectiveness of our approach, we
also provide detailed experimental results on real and artificial
large temporal datasets. Our experimental results suggest that
mining asynchronous periodic patterns using our proposed
algorithm is fast and efficient than as compared to previous
approach SMCA, which is a three-step based algorithm for
mining maximal complex patterns and requires depth-first-
enumeration for mining multi events and maximal complex
patterns.

Key words:
Asynchronous periodic patterns, temporal data mining,
maximal complex patterns, knowledge discovery.

Introduction

Mining periodic patterns in temporal datasets play an important
role in data mining and knowledge discovery tasks, and have
been successfully applied in many data mining applications. The
periodic patterns exist in many kinds of data, for example
transactional datasets, daily traffic patterns, meteorological data,
stock data, event logs, web logs and power consumptions are all
major applications of periodic patterns mining. In last one decade,
mining periodic patterns have been studied in various domains
such as sequential patterns [5], temporal patterns [1], cyclic
association rules [4], surprising patterns [2] and asynchronous
periodic patterns [3, 6]. Each of these studies have a different
definition for periodicity, which requires different kind of
techniques and algorithms.

Yang et al. in [6] introduced the problem of mining
asynchronous periodic pattern for mining longest periodic
subsequence which may contain a disturbance of length up
to a certain threshold. Two parameters, namely min_rep
and max_dis are employed to qualify valid patterns and the
symbol subsequence containing it. However their model
has several problems such as lack of finding multiple
events at one time slot and lack of finding successive non-
overlapped segments. To address these problems, in [3] K.

Huang proposed a novel SMCA algorithm which requires
no candidate pattern generation as compared to previous
technique [6]. Their algorithm allows the mining of all
asynchronous periodic patterns, not only in a sequence of
events, but also in a temporal dataset with multiple event
sets. In [3] they also proposed a dynamic hash-based
validation mechanism which discovers all asynchronous
type periodic patterns in a single scan of temporal dataset.
Their four phase approach uses a sequence of algorithms
to mine singular pattern, multiple pattern, maximal
complex pattern and finally asynchronous periodic
patterns. Each of these algorithms uses output of the last
executed algorithm as their input. The main limitation of
their algorithm is that, it not only mines the maximal
complex pattern but also its subsets (single event patterns
and multiple events patterns) using depth first search
enumeration approach, thus wasting a considerable
amount of processing time for mining subsets. For large
datasets having i-patterns where i is too large, a large
amount of processing time is waste for mining singular
and multi events 1-patterns that are subsets of i-patterns.
To increase the efficiency of mining asynchronous
periodic patterns on large datasets, we propose a novel
efficient algorithm E-MAP. Our propose algorithm finds
all maximal complex patterns in a single step algorithm
using a single dataset scan without mining single event
and multiple events patterns explicitly, while
asynchronous periodic patterns are mined using the same
depth first search enumeration process as described in [3].
The single dataset scan and single step mining approach
makes the E-MAP much faster and efficient as compared
to previous technique SMCA. The other feature of E-MAP
is that, it requires less storage space as compared to
SMCA. To check the effectiveness of our E-MAP
approach, we also provide detailed experimental results on
real and artificial datasets. Our different experimental
results suggest that mining asynchronous periodic patterns
using E-MAP is more efficient as compared to SMCA.

2. Related Work

Much work has been done in the field of periodicity detection in
time series databases. Most of the work done is related to
synchronous pattern mining and less attention has been paid to
asynchronous pattern mining. Yang et al. [6] proposed a flexible
model of asynchronous periodic patterns to mine patterns that are

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

175

Manuscript received August 5, 2006.
Manuscript revised August 25, 2006.

Fig. 1. Graphical Representation of Event-Block-Memories (EBmem), Period-Block-Memories (PBmem) and Offset-Segment-Memories (OSmem) of Table

1 dataset

of any length and may only be present within a subsequence, and
whose occurrences may be shifted due to disturbance. Two
parameters min_rep and max_dis are employed to specify the
minimum number of repetitions required within each contiguous
segment of pattern occurrences and the maximum disturbance
allowed between any two successive valid segments. Upon
satisfying these two requirements, the longest valid subsequence
of a pattern is returned. A two phase algorithm is devised to first
generate potential periods by distance-based pruning followed by
an iterative procedure to derive and validate candidate patterns
and locate the longest valid subsequence.

K. Huang et al. in [3] proposed a novel asynchronous partial
periodic patterns mining algorithm in multi-event temporal
database. Three parameters, namely min_rep (minimum
repetitions), global_rep (global repetitions) and max_dis
(maximum disturbance) are employed to qualify valid patterns and
the subsequence containing them, where this subsequent in turn
can be viewed as a list of valid segments of perfect repetitions
interleaved by a disturbance. Each valid segment is required to be
of at least min_rep contiguous repetitions of the pattern and the
distance of each piece of disturbance is allowed only up to
max_dis. The overall number of repetitions of a sequence is equal
to the sum of the repetitions of its valid segments. A sequence is
termed valid if and only if the overall repetitions of the pattern are
greater than global_rep. They proposed a four-phase algorithm for
mining asynchronous periodic pattern. They first introduce a hash
based validation mechanism to discover all single event periodic
patterns, named SPMiner (Single event pattern validation). In
order to generate the multi-event periodic pattern, complex pattern
and asynchronous sequences, they employ depth first enumeration

approach to develop MP-Miner (Multiple event pattern validation),
CPMiner (Complex pattern validation) and APMiner
(Asynchronous pattern validation).

3. Algorithm Overview

Table 1: A temporal data with 4 events 〈A, B, C, D〉 and 7 time instances

Many of the previously proposed algorithms [3, 6] require
multiple steps to mine complex patterns. These steps are executed
in a manner that discover simple patterns (single event patterns
and multiple events patterns) in early stages of algorithm and then
merge them to form more maximal complex patterns using depth
first search enumeration and finally asynchronous periodic
patterns in the later stage, thus requiring multiple steps and large

Time instance Event
1 A,C
2 A,B
3 A,C
4 A,B,D
5 D
6 C
7 C

Offset-Segment-Memory (OSmem〈event = D, period = 3, offset

Start Occurance Repetition

PBmem〈period = 2〉 PBmem〈period = 3〉

0 0 -1

0 0 -1

0 0 -1

0 0 -1

0 0 -1 0 0 -1 0 0 -1 0 0 -1 0 0 -1

0 0 -1 0 0 -1

0 0 -1 0 0 -1

0 0 -1 0 0 -1

0 0 -1 0 0 -1 0 0 -1

0 0 -1 0 0 -1 0 0 -1

0 0 -1 0 0 -1 0 0 -1

Offset 〈0〉 Offset 〈0〉 Offset 〈1〉 Offset 〈0〉 Offset 〈1〉 Offset 〈2〉

EBmem〈A〉

EBmem〈B〉

EBmem〈C〉

EBmem〈D〉

PBmem〈period = 1〉

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

176

Manuscript received August 5, 2006.
Manuscript revised August 25, 2006.

Fig. 2. Graphical Representation of Offset-Segment-Memories modification with time instance 〈1,2,4〉 of event A with Lmax = 3.

processing time. Our proposed algorithm E-MAP finds all
maximal complex patterns in a single step algorithm without
mining single event and multiple events patterns using only one
temporal dataset scan. The other main feature of main E-MAP is
that, it requires less storage space as compared to SMCA [3]. In
SMCA patterns generated after each step of the algorithm requires
the storage space for the intermediate output results. In contrast E-
MAP is a single step algorithm; therefore it does not require
storing any intermediate output results. The storage requirements
of the E-MAP algorithm are much less than as compared to the
space required by the SMCA algorithm.

The E-MAP algorithm we introduced the following
concepts for its data structure representation.

Event-Block-Memory: - In E-MAP each individual event
of temporal dataset contains its own Event-Block Memory
(EBmem), which is associated with each periods P in Lmax
(1≤ P ≤ Lmax) and contains internal Offset-Segment-
Memories with respect to different offsets of P (0≤ offset <
P). For example the dataset of Table 1 contains four
different events 〈A, B, C, D〉 so Event-Block-Memory is
associated with EBmem〈A〉, EBmem〈B〉, EBmem〈C〉 and
EBmem〈D〉. Figure 1 shows the graphical representation of
Event-Block-Memories of Table 1 dataset.

Period-Block-Memory: - As each individual event
contains its own Event-Block-Memory, same as each
individual period P of Lmax contains its own Period-Block-
Memory (PBmem), which contains its own internal Offset-
Segment-Memories for all events of datasets with respect to
different offset of P (0≤ offset < P). For example with Lmax
= 3, there are 3 different time periods associated with it 〈P

=1, P=2, P=3〉. Therefore Period-Block-Memory is
associated with PBmem〈P=1〉, PBmem〈P=2〉 and
PBmem〈P=3〉. Figure 1 shows the graphical representation
of Period-Block-Memories of this example.

Offset-Segments-Memory: - As we have explained EBmem
is association with each period P of Lmax and contains
internal Offset-Segment-Memories with respect to different
offsets of P. For a time period of length P there are exactly
P (0≤ offset < P) Offset-Segment-Memories are association
with each individual EBmem. For example if 〈P = 2〉 and
〈event = B〉, then there are exactly 2 Offset-Segment-
Memories are associated with EBmem〈B〉. Offset-Segment-
Memory of OSmem〈event = B, period = 2, offset = 0〉 and
OSmem〈event = B, period = 2, offset = 1〉. Same as for 〈P
= 3〉 and 〈event = A〉 there are exactly 3 Offset-Segment-
Memories are associated with EMmem〈A〉. Offset-Segment-
Memory of OSmem〈event= A, period = 3, offset = 0〉,
OSmem〈event = A, period = 3, offset = 1〉 and
OSmem〈event = A, period = 3, offset = 2〉. Figure 1 shows
the graphical representation of Offset-Segment-Memories of
Table 1 dataset events with Lmax = 3.

Offset-Segment-Memory Components: - Each individual
Offset-Segment-Memory contains three main components
Start_Occurance, Repetition and Last_Occurance that are
used in mining maximal complex periodic patterns. At start
of the E-MAP algorithm all Start_Occurance and
Repetition components of Offset-Segment-Memories are
initialize to 0 and Last_Occurance are set to -1, then after
the following rule is applied for their modifications during
pattern mining.

PBmem〈period = 1〉 PBmem〈period = 2〉 PBmem〈period = 3〉

4 1 4 2 2 4 0 0 -1 0 0 -1 4 1 4 0 0 -1

EBmem〈A〉 EBmem〈A〉 EBmem〈A〉

Offset Segment Memories Representation at time instance 〈 4〉

PBmem〈period = 1〉 PBmem〈period = 2〉 PBmem〈period = 3〉

1 2 2 2 1 2 0 0 -1 0 0 -1 0 0 -1 2 1 2

EBmem〈A〉 EBmem〈A〉 EBmem〈A〉

Offset Segment Memories Representation at time instance 〈 2〉

PBmem〈period = 1〉 PBmem〈period = 2〉 PBmem〈period = 3〉

1 1 1 0 0 -1 1 1 1 0 0 -1 1 1 1 0 0 -1

EBmem〈A〉 EBmem〈A〉 EBmem〈A〉

Offset Segment Memories Representation at time instance 〈 1〉

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

177

Rule 1:- If Last_Occurance of an Offset-Segment-Memory
contains a difference with respect to current time instance,
which is equal to its PBmem length, then Last_Occurance
is set to current time instance and Repetition is increment
by 1 and Start-Occurance is left unchanged. If
Last_Occurance of an Offset-Segment-Memory contains a
difference with respect to current time instance, which is
greater than its PBmem length, then Last_Occurance and
Start_Occurance are set to current time instance and
Repetition is set to 1.

Example 1:- Let we take an example with Lmax = 3, event =
A and time instances 〈1, 2, 4〉. At time instance 〈1〉 first we
calculate the offset difference of current time instance with
respect to all periods in Lmax. For 〈P = 1〉 the offset will be
0 〈offset = current time instance % P〉, for 〈P = 2〉 the
offset will be 1 〈offset = current time instance % P〉 and for
〈P = 3〉 the offset will be 1. For 〈P = 1〉 and time instance
〈1〉 since the offset is equal to 0, therefore, the components
of Offset-Segment-Memory of OSmem〈 event = A, P = 1,
offset = 0〉 will be modify. As the difference between
Last_Occurance and current time instance is equal to
PBmem〈P = 1〉 length (current time instance -
Last_Occurance = 1 – (-1) = 1), hence according to Rule 1
Last_Occurance and Start_Occurance are set to current
time instance 〈Last_Occurance = 1, Start_Occurance = 1〉
and Repetition is increment by 1 〈Repetition = 1〉.
Similarly for 〈P = 2〉 and time instance 〈1〉 the offset = 1, so
the components of Offset-Segment-Memory of OSmem〈
event = A, P = 2, offset = 1〉 will be modify. Since the
difference between Last_Occurance and current time
instance is greater to PBmem〈P = 1〉 length, therefore again
according to Rule 1 Last_Occurance and Start_Occurance
are set to current time instance 〈time instance = 1〉 and
Repetition is increment by 1〈Repetition = 1〉. The same
above process will be repeat for 〈P = 3〉 offset = 1 and time
instance 〈1〉.

Let we execute our example for time instance 〈2〉, 〈P = 1〉
with offset = 0. As the offset = 0 so the components of
Offset-Segment-Memory of OSmem〈 event = A, P = 1,
offset = 0〉 will be modify. Since the difference between
Last_Occurance and current time instance is equal to
PBmem〈P = 1〉 length, therefore according to
Rule 1 Repetition is increment by 1 and set to 〈Repetition =
2〉 and Last_Occurance is set to current time instance
〈Last_Occurance = 2〉. Rest of the example will follow the
same process; Figure 2 shows the complete graphical
representation of Offset-Segment-Memories components
modification at each time instance with event 〈A〉.

4. (E-MAP): Efficiently Mining of
Asynchronous Periodic Patterns

Fig. 3. Pseudo code of E-MAP Algorithm.

Figure 3 shows the pseudo code of the E-MAP algorithm.
There are three main steps of E-MAP, the first step is the
initialization process and second and third mines all the
maximal complex periodic patterns. The reason behind why
we separate the second and third step is explained later in
this section. In step one of the algorithm all the Event-
Block-Memories, Period-Block-Memories and Offset-
Segment-Memories are created. In the same step all the
Start_Occurance and Repetition components of Offset-
Segment-Memories are set to 0 and Last_Occurance are set

E-MAP ()

1. for ∀ e ∈E
2. for ∀ p ∈P
3. OSmem〈event=e, P=p, offset=i〉. Start_Occurance = 0
4. OSmem〈event=e, P=p, offset=i〉. Last_Occurance = -1
5. OSmem〈event=e, P=p, offset=i〉. Repetition = 0

6. for ∀ t ∈D of temporal dataset
7. for ∀ e ∈E that occurs at time instant t
8. for ∀ p ∈Lmax

9. Calculate oset=t % p
10. if ((t - OSmem〈event=e, P=p, offset=oset〉. Last_Occurance)>

p)then
11. {
12. AddInOffset-SegmentModifyList(OSmem〈event = e, P = p,

offset = oset));
13. OSmem〈event=e, P=p, offset=oset〉. Last_Occurance = t
14. OSmem〈event=e, P=p, offset=oset〉. Start_Occurance = t
15. OSmem〈event=e, P=p, offset=oset〉..Repitition=1
16 }
17. else
18. {
19. OSmem〈event=e, P=p, offset=oset〉. Last_Occurance=t
20. OSmem〈event=e, P=p, offset=oset〉. Repitition++
21. }

22. for each Offset-Segment S in AddInOffset-SegmentModifyList
23. Combine S in valid sequence if it is non-overlap segment
24. if (valid sequence contains a Repetitions greater than

or equal to global_rep and contain a disturbance less
than max_dis) then

25. Add in MaximalComplexPattern list
26. for ∀ p ∈Lmax
27. for ∀ e ∈E
28. for each offset oset ∈p
29. S = OSmem〈event =e P = p offset = oset〉
30. If S.Repetitions > min_rep Then
31. Combine S in valid sequence if it is non-overlap

segment
32. if (valid sequence contains a Repetitions greater

than or equal to global_rep and contain a
disturbance less than max_dis) then

33. Add in MaximalComplexPattern list

 IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

178

to -1, lines from 1 to 5 in Figure 3 show the pseudo code
this step. In the second step of E-MAP, the algorithm first
scans each time instance 〈t〉 of dataset with all of its events
〈e〉 one by one, lines from 6 to 25 in Figure 3 show this
process. Next, the algorithm first calculates the offset of 〈t〉
with all time periods 〈P〉 in Lmax and modifies the
Start_Occurance, Last_Occurance and Repetitions
components of Offset-Segment-Memories of event 〈e〉
period 〈P〉 and offset 〈t % P〉 according to the Rule 1. After
scanning each event e of time instance t the difference
between the Last_Occurance of OSmem〈event = e, period
= P, offset = t % P〉 and current time instance 〈t〉 is
evaluated for maximal complex period patterns using the
following principles.

• If only a single Offset-Segment-Memory is modified in
any particular PBmem of length l, and contains a
Repetition component value greater than min_rep
threshold, then the pattern is declared as single event
of period length l and reference to that event which it
belongs. For example if any OSmem〈event = Z, P = 2,
offset = 1〉.Repetition contains a value greater than
min_rep so this generates a single event pattern and
reference to event 〈Z〉 of period length 2.

• If more than one Offset-Segment-Memories are
modified in any Period-Block-Memories but of
different period lengths, and contain Repetition
component values greater than min_rep. Then the
Offset-Segment-Memories are declared as single event
patterns of different period lengths and reference to
those events from which they belongs. For example
with min_rep = 3, if any two OSmem〈event = A,
period = 1, offset = 0〉.Repetition and OSmem〈event =
B, period = 2, offset = 1〉.Repetition contain values
greater than min_rep, so both of these are single event
patterns (pattern = A and pattern = B) with period
length of 1 and 2 respectively.

• If more than one Offset-Segment-Memories of same
offset size are modified in same PBmem of size l and
contains a Repetition component value greater than
min_rep. Then the pattern is declared as multiple
events pattern of period length l and reference to those
events from which they belongs. For example with
min_rep = 3, if any two OSmem〈event = Y, period = 2,
offset = 1〉.Repetition and OSmem〈 event = Z, period =
2, offset = 1〉.Repetition contain values greater than
min_rep threshold, so these generates a multiple events
pattern (pattern = YZ) of period length 2.

• If more than one Offset-Segment-Memories of different
offset sizes are modified in PBmem of length l but of
same size, and contains a Repetition component values

greater than min_rep. Then the pattern is declared as
maximal complex pattern of period l and reference to
those events from which they belongs. For example
with min_rep = 3, if any two OSmem〈event = Y,
period = 2, offset = 0〉.Repetition and OSmem〈event =
Z, period = 2, offset = 1〉.Repetition contain a value
greater than min_rep threshold so this generates a
maximal complex pattern (pattern = (Y, Z)) with
period length 2.

In step 2 of the algorithm only those Offset-Segment-
Memories are evaluated for maximal complex patterns
which are modified by the events of time instances 〈t〉.
However, some Offset-Segment-Memories are left
unevaluated, thereby in step 3 of the algorithm the Offset-
Segment-Memories of all Period-Block-Memories are
evaluated for maximal complex patterns using the same
principle same as we have described for the step 2. Lines
from 26 to 33 in Figure 3 show this step.

5. Computational Experiment

To evaluate the performance of E-MAP, we performed
detailed experimental results on real and artificial generated
large temporal datasets by varying the values of different
factors to visualize the effect on performance. The
experiments are performed on a computer 1.6 GHz CPU
clock rate and 256 MB of main memory. All the source
code of E-MAP and SMCA are written in Visual C++ 6.0.
Our experimental dataset consists of the web log data of
National University of Computer and Emerging Sciences
Islamabad. The data was recorded mostly during 9 am to 8
pm. So for each day we filtered out the data for these
particular hours only. The granularity was set to be one
hour and data recorded in an hour was considered to be of a
single time stamp. Furthermore we only considered the
access patterns of 68 different clients IP. The data spanned
over a time of 4 years starting from 2002. Approximately
more than 3700 time instants were recorded in the data.
Figure 4 shows the performance curve of E-MAP and
SMCA on two different min_rep and Lmax thresholds. As
clear from Figure 4, the E-MAP algorithm outperforms
SMCA on almost all levels of min_rep and Lmax thresholds.
Figure 5 shows the number of segments mined on these two
different thresholds.

IJCSNS International Journal of Computer Science and Network Security, VOL.6 No.8A, August 2006

179

Manuscript received August 5, 2006.
Manuscript revised August 25, 2006.

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50

Lmax

Ti
m

e(
Se

cs
)

SMCA E-MAP

0

5

10

15

20

25

30

4 5 6 7 8 9 10 11 12

min_rep

Ti
m

e
(S

ec
s)

SMCA E-MAP

 (a) (b)

Fig. 4. Performance results of E-MAP and SCMA on two different (a) Lmax with min_rep = 5 (b) min_rep thresholds with Lmax = 40.

0

1500

3000

4500

6000

7500

9000

10500

5 10 15 20 25 30 35 40 45 50

Lmax

Se
gm

en
ts

0

1500

3000

4500

6000

7500

9000

10500

12000

3 4 5 6 7 8 9 10 11 12

min_rep

Se
gm

en
ts

 (a) (b)

Fig. 5. Number of segments mined on two different (a) Lmax with min_rep = 5 (b) min_rep thresholds with Lmax = 40.

6. Conclusion

In this paper we proposed a novel algorithm E-MAP for
mining asynchronous periodic patterns. Our algorithm
mines all maximal complex patterns in a single step using
single scan of temporal dataset without mining single
event and multi events patterns. Our different extensive
experiments on real as well as artificial generated temporal
datasets show that mining maximal complex periodic
patterns using E-MAP is more efficient and fast as
compared to previous well known approach SMCA, which
is 3 steps algorithm for mining maximal complex patterns.
This shows the effectiveness of our approach.

7. Reference

[1] M. Antunes and L. Oliveira, “Temporal data mining: An
Overview”, In Proc. of the KDD 2001 Workshop on
Temporal Data Mining, San Francisco, CA, USA, 2001.

[2] J. Yang, W. Wang and P. Yu, "Mining Asynchronous

Periodic Patterns in Time Series Data", IEEE Transactions

on Knowledge and Data Engineering, vol. 15, no. 3, pp.
613-628, May/Jun, 2003.

[3] K. Huang and C. Chang, "SMCA: A General Model for

Mining Asynchronous Periodic Patterns in Temporal
Databases", IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 6, pp. 774-785, Jun, 2005.

[4] B. Ozden, S. Ramaswamy and A. Silberschatz, “Cyclic

association rules”, In Proc. of the 14th International
Conference on Data Engineering, pages 412–421, 1998.

[5] R. Srikant and R. Agrawal, “Mining sequential patterns:

Generalizations and performance improvements”, In Proc.
of the 5th International Conference on Extending Database
Technology, volume 1057 Lecture Notes in Computer
Science, Springer, 1996.

[6] J. Yang, W. Wang and P.S. Yu, “Mining asynchronous

periodic patterns in time series data”, In Proc. Of the sixth
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 275–279, 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

