
International Journal of Innovative
Computing, Information and Control ICIC International c©2010 ISSN 1349-4198
Volume 6, Number 1, January 2010 pp. 287–296

PSOGP: A GENETIC PROGRAMMING BASED ADAPTABLE
EVOLUTIONARY HYBRID PARTICLE SWARM OPTIMIZATION

Muhammad Rashid and A. Rauf Baig

Department of Computer Science
National University of Computer and Emerging Sciences
A.K. Brohi Road, Sector H-11/4, Islamabad, Pakistan

rashid.nuces@gmail.com; rauf.baig@nu.edu.pk

Received October 2008; revised March 2009

Abstract. In this study we describe a method for extending particle swarm optimiza-
tion. We have presented a novel approach for avoiding premature convergence to local
minima by the introduction of diversity in the swarm. The swarm is made more diverse
and is encouraged to explore by employing a mechanism which allows each particle to
use a different equation to update its velocity. This equation is also continuously evolved
through the use of genetic programming to ensure adaptability. We compare two vari-
ations of our algorithm, one utilizing random initialization while in the second one we
utilize partial non-random initalization which forces some particles to use the standard
PSO velocity update equation. Results from experimentation suggest that the modified
PSO with complete random initialization shows promise and has potential for improve-
ment. It is particularly very good at finding the exact optimum.
Keywords: Particle swarm optimization, Genetic programming, Function optimization,
Evolution, Velocity update equation

1. Introduction. This paper presents an extension to the well known particle swarm
optimization algorithm. Unlike other population-based optimization approaches which
are motivated by evolution, particle swarm optimization is motivated from the simulation
of social behavior. There have been numerous attempts to incorporate evolution into
PSO. This is usually done by creating a hybrid algorithm which combines aspects from
evolutionary computation with PSO. These can be categorized into two broad categories.
The first category consists of those hybrid algorithms which evolve the particles of PSO.
The second category includes those hybrid algorithms in which the PSO algorithm itself is
evolved. There have also been numerous approaches in which a different velocity update
equation has been used for different particles in a swarm. Generally in these approaches,
the particles are divided into multiple subgroups and each subgroup shows a different
behavior achieved by using a separate update equation for that subgroup. There have
also been numerous other modifications made to PSO and evolutionary algorithms in
general. We introduce a novel approach which incorporates evolution into PSO [30].
In this approach a learning set is not required and the PSO adapts itself to the target
problem at runtime by evolving the update equation through genetic programming [20].
This allows the PSO to perform better by adjusting itself according to the problem. We
also introduce the concept of using a different update equation for each particle to avoid
premature convergence to local minima because this introduces diversity in the swarm
and encourages exploration. Each particle’s velocity update equation is evolved separately
by using genetic operators. We also present another variant which utilizes partial non-
random initialization. We present a comparison of the two approaches and compare their
performance with each other as well as with the standard PSO. In the next section, we

287

2 M. RASHID AND A. RAUF BAIG

to incorporate evolution in PSO. Then we look at some other existing PSO algorithms
in which multiple velocity update equations have been used. We also mention a few of
the recent innovations made in PSO and evolutionary algorithms. We then proceed to
present our proposed extensions. In the end the experimentation is described followed by
a discussion of the results.

2. Particle Swarm Optimization. Particle swarm optimization (PSO) is a population
based computational technique inspired from the simulation of social behavior of flock
of birds. PSO was originally designed and developed by Eberhart and Kennedy [18]. A
newer version was introduced in [33] by incorporating inertia weight. In PSO a swarm of
particle is used to represent the population of candidate solutions. Each particle is a point
in the N-dimensional search space. A particle is represented by its current position xi,
and its current velocity vi (both xi and vi are N-dimensional vectors). PSO tries to find
the optimal solution to the problem by moving the particles and evaluating the fitness of
the new position. A particle’s position is updated by the following equation.

xt+1
i = xt

i + vt
i

Along with updating the particle’s position, its velocity is updated with every iteration
as well. The amount by which the velocity is changed is dependent upon three factors;
the particle’s personal best position, the swarm’s best position and the particle’s previous
velocity. The velocity is updated according to the following equation.

vt+1
i = w × vt

i + c1 × r1 × (pt
i − xt

i) + c2 × r2 × (pt
g − xt

i)

Where w is the inertia weight and c1 and c2 are constants and r1 and r2 are random
numbers in the range [0...1]. pi is the personal best position of the particle and pg is the
global best position of the swarm. The second part of the above equation is usually referred
to as the cognition part because due to this the particle’s new velocity is influenced by its
personal best position; whereas the third part is referred to as the social part because due
to this part the particle’s new velocity is influenced by the swarms best position. PSO
has been the focus of many research efforts. Many improvements have been suggested
and many more are still possible. Even in its current state, PSO is considered a fast and
robust method for optimization of continuous nonlinear functions.

2.1. PSO variations incorporating evolution. Angeline [4] incorporated a selection
process similar to that of evolutionary algorithms into PSO and showed that the selection
based PSO algorithm exhibits better performance on some classes of problems. Clerc [8]
was one of the first ones to use reproduction in PSO. In this approach the particles of
PSO were capable of generating new particles, killing themselves or modify the inertia
and acceleration coefficient. Løvberg et al. [24, 25] suggested the use of an arithmetic
cross-over operator for reproduction, which selected two particles randomly to create an
offspring. Numerous other authors [13, 16, 26, 27, 39, 41, 42, 43] have used mutation with
PSO to create hybrid PSO algorithms which can avoid premature convergence. Hendtlass
[15], Kannan et al. [17], Zhang and Xie [44] have all made use of an arithmetic cross-over
operator which performs cross-over between three randomly selected parents.

Diosan and Oltean [12] suggest the use of GA to create a hybrid technique in which the
PSO algorithm is evolved. Poli et al. [28] explore the possibility of evolving the velocity
update equation through the use of genetic programming. In this approach the PSO is
specialized for a certain class of problem by training on learning set data. Once trained,
the newly evolved equation is used to update the velocity of all the particles for that class
of problems and the update equation doesn’t change afterwards.

PSOGP: A GP BASED ADAPTABLE EVOLUTIONARY HYBRID PSO 3

2.2. PSO variations utilizing multiple velocity update equations. Al-Kazemi and
Mohan [1, 2, 3] suggested that the main swarm be divided into two sub-swarms. Each sub-
swarm can be in either attraction or repulsion phase and use a different velocity update
equation for each phase. Rigit and Vesterstrøm [30, 31, 40] followed a similar approach
except for the fact that they didn’t use sub-swarms and the whole swarm alternated
between attraction and repulsion phase. During attraction the standard velocity update
equation is used. Whereas during repulsion a modified velocity update equation is used.
Thompson et al. [38] have used a cluster-based PSO in which the velocity update equation
used for the cluster centers are different from those used for particles within the clusters.
Silva et al. [35] implemented the predator-prey PSO in which they used one predator
particle to pursue the global best prey particle. The velocity update equation of the
predator particle is different from that of the prey particles.

2.3. Other PSO variations. Deng et al. [10] incorporated double justification in the
PSO for the resource-constrained project scheduling problem. Cai et al. [5] proposed the
performance-dependent adaptive PSO. Cui et al. [9] introduced a new fast PSO that does
not evaluate all new positions owning a fitness and associated reliability value of each
particle of the swarm. Lin et al. [22] proposed the immune PSO which combines the
immune algorithm and the PSO to perform the parameter learning for a functional-link-
based neural fuzzy network. Cai et al. [6] proposed a modified version of PSO combined
with a self-adjusting cognitive selection strategy and mutation strategy. Shen and Tsai
[32] developed a systematic design strategy for Co-Planar Waveguide fed monopole an-
tennas by using an improved PSO to determine the optimized values of an equivalent
circuit’s components. Li et al. [21] proposed a Fine-grained parallel particle swarm op-
timization method based on GPU acceleration, which maps a parallel PSO algorithm to
texture-rendering on consumer-level graphics cards. Su et al. [37] trained the weights
of the Artificial Neural Networks by using PSO. Chang et al. [7] presented a parallel
version of the PSO algorithm together with three communication strategies which can be
used according to the independence of the data. Liu et al. [23] proposed the real-coded
genetic algorithm to resolve the design of automobile fixtures optimization problem. Fu-
rusho et al. [14] proposed a decentralized optimization method for production scheduling,
transportation routing for AGVs and motion planning for material handling robots si-
multaneously.

3. Proposed extension. In the classical PSO presented by Kennedy and Eberhart [18],
a swarm of particles is used to explore the search space. The individual particles of the
swarm are allowed to move through the whole search space in an effort to find the op-
timum. As the particles move about the search space, they take guidance from other
particles which have higher fitness. The particles are also influenced by their own expe-
riences. To achieve this, each particle keeps information about itself and the rest of the
swarm. Each particle keeps track of its current position, current velocity and personal
best position. In each of the iterations a velocity update equation is used to determine
the change in the velocity using information about that particle’s best position, the global
best position and random values. The new velocity is then used to update the position of
the particle thus enabling it to move through the search space. Taking inspiration from
existing studies and revisiting the swarm in nature we suggest that both evolution and
diversity are essential for PSO. Hence we propose a novel approach in which we incorpo-
rate both the concepts into PSO. We allow our PSO to utilize different velocity update
equations for different particles to ensure diversity in the swarm. We also constantly
evolve these velocity update equations to allow the PSO to adapt to the specific problem.

4 M. RASHID AND A. RAUF BAIG

We first discuss the use of a different velocity update equation for each particle. We have
seen many researchers [1, 2, 3, 30, 31, 35, 38, 40] experimenting with PSO having more
than one velocity update equations. In all these approaches, the researchers have used only
two velocity update equations. Also these equations are predefined and do not change.
We however suggest the use of a different velocity update equation for each particle. So in
addition to keeping track of its current position, current velocity, personal best position
and global best position the particle will also keep track of the velocity update equation
used to update its velocity. The logic behind it is based upon inspiration from nature.
The particles within a swarm tend to follow a generally similar path towards a common
goal but there is slight differences in the manner in which they proceed, this difference
can be attributed to the individual’s own personality. Each individual in the swarm tends
to have a slightly different personality from the rest. So by keeping a separate update
equation for each individual, we are giving each particle a personality. This addition
introduces a much need property to the PSO which is diversity.

Now coming towards incorporating evolution into PSO. We have learned from literature
[4, 8, 11, 13, 15, 16, 17, 24, 25, 26, 27, 28, 29, 36, 39, 41, 42, 43, 44] that evolution when
incorporated into PSO can result in improved performance. It has also been observed that
different update equations give different results for different class of problems [28]. We
also suggest that each velocity update equation be evolved throughout the execution of the
PSO. Thus, by allowing the velocity update equations of each particle to be evolved, we are
letting the PSO adapt to the specific problem. In nature we observe that the personality
of an individual changes over time, this change in the personality of an individual is
influenced by personalities of other individuals in the swarm. By allowing each particle
to have a different velocity update equation and by evolving those equations through GP
we have developed a PSO hybrid which is, not only diverse, but can also adapt to the
optimization problem.

The GP that we have utilized will differ from classical GP in the sense that the popu-
lation size will be limited (i.e. the number of programs in a generation will be equal to
the number of particles). The function and terminal set used for GP is similar to that
of [28]. The function set includes the functions +, −, × and the protected division DIV.
The terminal set includes the position of the particle x, the velocity of the particle v, the
personal best position of the particle p, the global best of the swarm g and a constant c.
In the beginning while initializing the position of the particle the velocity update equation
of each particle will also be initialized. Within each iteration of PSO algorithm, along
with updating the position of the particle and the velocity, the velocity update equation
will also be updated using the cross over and mutation operators of genetic programming.
By introducing these two enhancements we hope to achieve diversity and adaptability in
the classical PSO. The new PSOGP algorithm is presented in Figure 1. In line 1 the task
of initializing the swarm includes initializing the positions, velocities and velocity update
equation of the particles. In line 4 the velocity update equation is evolved by either using
cross over operator or the mutation operator. One or two parents are selected from the
original swarm at random depending upon the operator that is going to be applied. The
particles having better fitness have a greater probability of being selected.

We also compare the PSOGP with a modified version of itself. We call this variant
PSOGPNR. PSOGPNR differs from PSOGP in the sense that we have used a partial non
random initialization technique for the GP, wherein some individuals in the GP population
are not randomly initialized but are rather initialized with an individual which is known
to have a high fitness. In PSOGPNR we have also employed a generation gap strategy
in order to protect the non-randomly initialized individuals in the GP population from
becoming extinct. The standard velocity update equation of PSO is considered to be a

PSOGP: A GP BASED ADAPTABLE EVOLUTIONARY HYBRID PSO 5

1. Initialize the swarm
2. While termination criteria is not meet do
3. Begin

For each particle evolve velocity update equation
Update velocity of each particle
Update position of each particle
Update personal best and global best

4. End

Figure 1. PSOGP Algorithm

good function for updating the velocity of the particles in a swarm. We were interested
in determine if we could achieve better performance by having some of the particles
utilize the standard velocity update equation of PSO. To this end we employed a partial
non random initialization technique for initializing the velocity update equations of the
particles. According to this technique, not all of the individuals were randomly initialized.
A small percentage of the individuals were initialized with the standard velocity update
equation of PSO. In order to protect these individuals from becoming extinct during the
execution of the algorithm, a generation gap was used which only allowed the randomly
initialized individuals to be replaced with their children and preserved the non-randomly
initialized particle till the end. A point to be noted is that this only applies to the velocity
update equation; the position and velocity of the particles were randomly initialized just
as in the standard PSO.

4. Experiment. We compared the performance of PSOGP with its own variant, PSOG-
PNR, and with the standard PSO. The three algorithms were tested on four benchmark
problems which have been commonly used in other studies of PSO [4, 19, 34]. These are
given in Table 1.

Table 1. Test Functions

Function Equation Range
Sphere f(x) =

∑n
i=1 x

2
i [-5,5]

Rosenbrock f(x) =
∑n

i=1(100(xi+1 − x2
i)2 + (xi − 1)2) [-2.048, 2.048]

Rastrigin f(x) =
∑n

i=1(x
2
i − 10 cos(2πxi) + 10) [-5.12, 5.12]

Griewank f(x) = 1
4000

∑n
i=1 x

2
i −

∏n
i=1 cos(xi√

i
) + 1 [-600, 600]

The 10 dimensional versions of these functions were employed. Each PSO was executed
100 times. During each execution a maximum of 200 iterations were allowed. The initial
positions of the particles, in the swarm, were uniformly distributed over the entire search
space. No restriction was placed on the velocity. However the positions of the particles
were restricted to be within the limits specified for each function. 10% of the particles
were initialized with the standard velocity update equation of PSO, whereas the velocity
update equation of the other 90% particles were randomly initialized. The cross over
operator was applied with the probability of 0.9 and the mutation operator was applied
with the probability of 0.1. A generation gap of 0.9 was used, that is 10% of the particles
which were initialized with the standard velocity update equation of PSO did not change
their velocity update equation. The parents were selected based on their fitness (i.e.
particles with greater fitness had a greater chance of being selected for reproduction).
With each iteration the velocity update equation of 90% of the particles were changed.

6 M. RASHID AND A. RAUF BAIG

The size of the swarm was kept constant. The number of particles for the 10 dimensional
problems was 16. The acceptable error was set at 0.0001. Any PSO with an error less than
the threshold was considered successful. PSO was terminated when either the optimal
solution was found or it had executed 200 iterations. The parameters for the experiments
have been taken from literature and were empirically determined to be good values for
these test functions. When using PSOGP on real world problems, these can be adjusted
according to the specific problem.

To compare the performance of the three PSO algorithms, we made use of four different
performance measures. These are mean error, success rate, optimum rate and iterations.
To calculate the mean error, we calculated the error of the global best position at the end
of each run and took the average of 100 runs. We also calculated the standard deviation
of mean error. The success rate was calculated by counting the number of runs in which
the global best position had an error value less than the threshold at the end of the run.
Similarly the optimum rate was calculated by counting the number of runs in which the
PSO was able to find the exact optimum, i.e. the global best position at the end of the
run had an error value of zero. The number of iterations were also counted for each PSO
and averaged over 100 runs. In addition to comparing the performance of PSOGP with
other PSO algorithms, we were also interested in observing the velocity update equations
that were evolved during the execution of PSO. To this end we recorded all of the velocity
update equations which were used for each particle for a single run of the algorithm for
all four benchmark functions. We were interested in seeing whether certain equations
were used more frequently than others or not. We calculated the frequency of use of each
velocity update equations and analyzed the more frequently occurring ones.

5. Results. During the experiment six different measures were collected for each of the
PSO. Table 2 lists results from the conducted experiment. This table lists the test func-
tions and the mean and standard deviation of the error. The results show that PSOGP
was able to achieve significantly better performance over PSOGPNR and PSO. Although
PSOGPNR gave a better performance as compared to PSO but its results were worse than
that of PSOGP. This leads us to believe that the non random initialization technique did
not give improvements in terms of mean error. For PSOGP the mean and standard devi-
ation of all but Rosenbrock function are zero because in all other cases PSOGP was able
to find the optimum solution 100% of the times. In Table 3 the percentage of success
and the percent of times the optimum was found are listed for PSOGP, PSOGPNR and
PSO. Again with the exception of the Rosenbrock function, PSOGP was able to find the
optimum 100% of the time. This is a significant improvement from the standard PSO.
There are many optimization problems in which it is important that the exact optimum
is found instead of just finding a near optimum. Although the standard PSO is good
at finding near optimum solutions but it has trouble when it comes to finding the exact
optimum as is evident from the results. This is the main strength of PSOGP as it is very
good at finding the exact optimum. PSOGPNR did give better performance as compared
to PSO but its performance was worse than that of PSOGP which further strengthens our
claim that the non random initialization strategy which forced some of the particles to
use the standard PSO velocity update equation does not give better performance. Table
4 presents the number of iterations required by each PSO variant. Once again we see
that on the average a lesser number of iterations were required by PSOGP to find the
optimum.

Table 5 present the 10 most frequently evolved velocity update equations during a
single execution of PSOGP for all of the test functions. The velocity update equations
are listed in pre-order notation and represent the change in the velocity of the particle. An

PSOGP: A GP BASED ADAPTABLE EVOLUTIONARY HYBRID PSO 7

Table 2. Mean Error

Function PSOGP PSOGPNR PSO
Sphere 0.00 ± 0.00 46.93E-14 ± 1.37E-13 4.43E-12 ± 2.76E-11

Rosenbrock 5.38E-02 ± 1.57E-01 7.30E+00 ± 2.66E+00 4.82E+00 ± 1.58E+00
Rastrigin 0.00 ± 0.00 1.13E-07 ± 2.22E-07 1.56E+01 ± 6.57E+00
Griewank 0.00 ± 0.00 4.86E-08 ± 8.00E-08 1.31E-01 ± 7.58E-02

Table 3. Success and Optimum Rate

Function
PSOGP PSOGPNR PSO

Success Optimum Success Optimum Success Optimum
Sphere 100.00% 100.00% 100.00% 99.00% 100.00% 0.00%

Rosenbrock 80.00% 78.00% 17.00% 16.00% 0.00% 0.00%
Rastrigin 100.00% 100.00% 100.00% 97.00% 0.00% 0.00%
Griewank 100.00% 100.00% 100.00% 38.00% 0.00% 0.00%

Table 4. Iterations

Function PSOGP PSOGPNR PSO
Sphere 48.51 112.31 200

Rosenbrock 109.89 174.2 200
Rastrigin 45.27 149.14 200
Griewank 35.02 194.08 200

Table 5. Frequency of occurrence of equations for test functions

Equation Sphere Rosenbrock Rastrigin Griewank
x 2305 6502 1932 1726

−gg,−pp,−vv,−xx,−cc 1464 7430 782 1415
g 2275 3546 2061 1642
p 1756 3275 1862 1116
c 1999 1990 1709 1698
v 1376 3366 1670 933
−gx 500 2363 201 388
−px 345 1663 145 230
−vx 219 1694 192 172
−cx 562 700 189 745

explanation of the evolved equations is given in Table 6. As we can see that for all of the
test functions similar velocity update equations were evolved more frequently. One of the
frequently occurring velocity update equations is c, meaning that a random number was
used to update the velocity. This is interesting because as a result of this the velocities
of the particles were randomly changed with a higher frequency. We can also see the
social component of the classical PSO (−gx) being used quite frequently. The cognition
component of the classical PSO (−px) also occurs with higher frequency. However we
rarely see both the cognition and social components being used simultaneously in PSOGP.
This together with that fact that PSOGPNR, in which we forced some particles to use the
standard PSO velocity update equation which has both social and cognition components,
gave poorer performance as compared to PSOGP shows that the key to PSOGP success

8 M. RASHID AND A. RAUF BAIG

Table 6. Explanation of frequently occurring equations

Equation Description
−cx Calculates the distance of the particle from a random point
−gx Calculates the distance of the particle from global best position
−px Calculates the distance of the particle from personal best position
−vx Calculates the difference of the particle’s velocity and position
x The current position of the particle
v The current velocity of the particle
p The current personal best position of the particle
g The current global best position
c A random number

−gg,−pp,−vv, Evaluates to 0
−xx,−cc

is its ability to use different velocity update equations and to evolve them. Another
interesting equation which is evolved frequently is v, meaning that the current velocity
of the particle is added to its velocity causing the velocity to be doubled. Hence we can
deduce that quite often the particle is looking to accelerate and double its velocity. We
also see the equations −gg,−pp,−cc,−vv,−xx being evolved quite often. They all can
be considered the same because all five evaluate to zero and thus cause the velocity of
the particle to remain unchanged. In classical PSO the velocity of every particle has to
be changed but in PSOGP we see that during many iterations the velocities of particles
are left unchanged. We can conclude that although a large number of random velocity
update equations were evolved during the execution of PSOGP, the useful equations were
evolved more often than others.

6. Conclusion. By using a separate velocity update equation for each particle we were
able to introduce enough diversity in the swarm to allow the swarm to thoroughly explore
the whole search space and find the optimum with great success. With the addition of
evolution of these functions we were able to achieve significantly faster convergence. The
main advantage of PSOGP is that it is capable of finding the exact optimum which is very
crucial for some optimization problems. We have tried a partial non random initialization
strategy which forced the algorithm to utilize the standard PSO velocity update equation.
We concluded that this approach did not improve the performance of the algorithm.
However in future research we would like to try a partial non random initialization strategy
using some of the equations which we have found in this study to have been used more
frequently. It would be interesting to see if we can improve the performance of algorithm in
terms of execution time by using these equations directly instead of letting the algorithm
evolve them. We might also consider limiting the GP population to only these equations.
A point worth mentioning is that we have not taken into account the concepts from other
extensions of PSO such as neighborhoods. It will be interesting to see whether we can
achieve even better performance by including neighborhoods in our PSO. We can also
incorporate other ingredients in the velocity update equation as in [29] and [11]. Also
only the basic GP is used. Another research direction can be to use different variations
of GP to see if an improvement can be made.

Acknowledgment. This work is partially supported by Higher Education Commission of
Pakistan. The authors also gratefully acknowledge the helpful comments and suggestions
of the reviewers, which have improved the presentation.

PSOGP: A GP BASED ADAPTABLE EVOLUTIONARY HYBRID PSO 9

REFERENCES

[1] B. Al-Kazemi, C. K. Mohan, Multi-Phase Discrete Particle Optimization, Proc. of the Int. Workshop
on Frontiers in Evolutionary Algorithms, pp.622-625, 2002

[2] B. Al-Kazemi, C. K. Mohan, Multi-Phase Generalization of the Particle Swarm Optimization Algo-
rithm, Proc. of the IEEE Congress on Evolutionary Computation, pp.489-494, 2002

[3] B. Al-Kazemi, C. K. Mohan. Training Feedforward Neural Networks using Multi-Phase Particle
Swarm Optimization, Proc. of the Ninth Int. Conf. on Neural Information Processing, vol.5, pp.2615-
2619, 2002

[4] P. J. Angeline, Using Selection to Improve Particle Swarm Optimization, Proc. of the IEEE World
Congress on Computational Intelligence, Anchorage, Alaska, USA, pp.84-89, 1998

[5] X. Cai, Z. Cui, J. Zeng and Y. Tan, Performance-Dependent Adaptive Particle Swarm Optimization,
Int. J. of Innovative Computing, Information and Control, vol.3, no.6(B), pp.1697-1706, 2007.

[6] X. Cai, Z. Cui, J. Zeng and Y. Tan, Particle Swarm Optimization with Self-Adjusting Cognitive
Selection Strategy, Int. J. of Innovative Computing, Information and Control, vol.4, no.4, pp. 943-
952, 2008.

[7] J. Chang, S. Chu, J. F. Roddick and J. Pan, A Parallel Particle Swarm Optimization Algorithm
with Communication Strategies, J. of Information Science and Engineering, vol.21, no.4, pp. 809-818,
2005

[8] M. Clerc, Think Locally, Act Locally: The Way of Life of Cheap-PSO, an Adaptive PSO, Technical
report, http://clerc.maurice.free.fr/pso/,2001

[9] Z. Cui, J. Zeng and G. Sun, A Fast Particle Swarm Optimization, Int. J. of Innovative Computing,
Information and Control, vol.2, no.6, pp.1365-1380, 2006.

[10] L. Deng, Y. Lin, W. Zheng and Y. Xi, Incorporating Justification in the Particle Swarm Optimization
for the RCPSP, Int. J. of Innovative Computing, Information and Control, vol.4, no.9, pp.2315-2324,
2008.

[11] C. Di Chio, R. Poli, W. B. Langdon, Evolution of Force-Generating Equations for PSO using GP,
AI*IA Workshop on Evolutionary Computation, Evoluzionistico GSICE05, University of Milan Bic-
occa, Italy, 2005

[12] L. Diosan, M. Oltean, Evolving the Structure of the Particle Swarm Optimization Algorithms, Proc.
of the European Conf. on Evolutionary Computation in Combinatorial Optimization EcoCOP2006,
LNCS, Budapest, Hungary, vol.3906, pp.25-36, 2006

[13] S. C. Esquivel, C. A. Coello Coello, On the Use of Particle Swarm Optimization with Multimodal
Functions, Proc. of the IEEE Transactions on Evolutionary computation, vol.2, pp.1130-1136, 2003

[14] T. Furusho, T. Nishi and M. Konishi, Distributed Optimization Method for Simultaneous Production
Scheduling and Transportation Routing in Semiconductor Fabrication Bays, Int. J. of Innovative
Computing, Information and Control, vol.4, no.3, pp.559-575, 2008.

[15] T. Hendtlass, A Combined Swarm Differential Evolution Algorithm for Optimization Problems, Proc.
of the Fourteenth Int. Conf. on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, Lecture Notes in Computer Science, vol.2070, pp.11-18, Springer-Verlag, 2001

[16] H. Higashi, H. Iba, Particle Swarm Optimization with Gaussian Mutation, Proc. of the IEEE Swarm
Intelligence Symposium, pp.72-79, 2003

[17] S. Kannan, S. M. R. Slochanal, P. Subbaraj, and N. P. Padhy, Application of Particle Swarm
Optimization Technique and its Variants to Generation Expansion Planning, Electric Power Systems
Research, vol.70, no.3, pp.203-210, 2004

[18] J. Kennedy, R. Eberhart, Particle Swarm Optimization, Proc. of the IEEE Int. Conf. on Neural
Networks, Perth, Australia, vol.4, pp.1942-1948, 1995

[19] J. Kennedy, Small Worlds and Mega-Minds: Effects of Neighborhood Topology on Particle Swarm
Performance, Proc. of the IEEE Congress on Evolutionary Computation, Washington DC, USA,
vol.3, pp.1938, 1999

[20] J. R. Koza, Genetic Programming: On the programming of Computers by Means of Natural Selection,
MIT Press, 1992

[21] J. Li, D. Wan, Z. Chi and X. Hu, An Efficient Fine-Grained Parallel Particle Swarm Optimization
Method Based on GPU-Acceleration, Int. J. of Innovative Computing, Information and Control,
vol.3, no.6(B), pp. 1707-1714, 2007

[22] C. Lin, Y. Liu and C. Lee, An Efficient Neural Fuzzy Network based on Immune Particle Swarm
Optimization for Prediction and Control Applications, Int. J. of Innovative Computing, Information
and Control, vol.4, no.7, pp.1711-1722, 2008.

10 M. RASHID AND A. RAUF BAIG

[23] T. Liu, C. Chen and J. Chou, Intelligent Design of the Automobile Fixtures with Genetic Algorithms,
Int. J. of Innovative Computing, Information and Control, vol.4, no.10, pp.2533-2550, 2008.

[24] M. Løvberg, Improving Particle Swarm Optimization by Hybridization of Stochastic Search Heuris-
tics and Self-Organized Critically, Master’s thesis, Department of Computer Science, University of
Aarhus, Denmark, 2002

[25] M. Løvbjerg, T. K. Rasmussen, T. Krink, Hybrid Particle Swarm Optimiser with Breeding and Sub-
populations, Proc. of the Genetic and Evolutionary Computation Conf., GECCO-2001, San Fran-
cisco, California, USA, pp.469-476, 2001

[26] V. Miranda, N.Fonseca, EPSO - Best-of-two-worlds Mets-heuristic Applied to Power System Prob-
lems, Proc. of the IEEE Congress on Evolutionary Computation, vol.2, pp.1080-1085, 2002

[27] V. Miranda, N. Fonseca, EPSO - Evolutionary Particle Swarm Optimization, a New Algorithm with
Applications in Power Systems, Proc. of the Asia Pacific IEEE/PES Transmission and Distribution
Conf. and Exhibition, Yokohama, Japan, vol.2, pp.745-750, 2002

[28] R. Poli, W. B. Langdon, O. Holland, Extending Particle Swarm Optimisation via Genetic Program-
ming, Proc. of the 8th European Conf. on Genetic Programming, Lausanne, Switzerland, pp.291-300,
2005

[29] R. Poli, C. Di Chio, W. B. Langdon, Exploring Extended Particle Swarms: A Genetic Programming
Approach, Proc. of the 2005 Conf. on Genetic and Evolutionary Computation, Washington DC,
USA, pp.169-176, 2005

[30] J. Riget, J. S. Vesterstrøm, A Diversity-Guided Particle Swarm Optimizer - The ARPSO, Technical
report, Department of Computer Science, University of Aarhus, 2002

[31] J. Riget, J. S. Vesterstrøm, Controlling Diversity in Particle Swarm Optimization, Master’s thesis,
University of Aarhus, Denmark, 2002

[32] M. Shen and Y. Tsai, CPW-FED Monopole Antenna Characterized by using Particle Swarm Op-
timization Incorporating Decomposed Objective Functions, Int. J. of Innovative Computing, Infor-
mation and Control, vol.4, no.8, pp. 1897-1919, 2008

[33] Y. Shi ,R. Eberhart, A Modified Particle Swarm Optimizer, Proc. of the IEEE World Congress on
Evolutionary Computation, Anchorage, Alaska, USA, pp.69-73, 1998

[34] Y. Shi, R. Eberhart, Empirical Study of Particle Swarm Optimization, Proc of the IEEE Congress
on Evolutionary Computation, Washington DC, USA, vol.3, pp.1950, 1999

[35] A. Silva, A. Neves, E. Costa, An Empirical Comparison of Particle Swarm and Predator Prey
Optimisation, Proc. of the Thirteenth Irish Conf. on Artificial Intelligence and Cognitive Science,
In: Lecture Notes in Artificial Intelligence, vol.2464, pp.103-110, Springer-Verlag, 2002

[36] A. Stacey, M. Jancic, I. Grundy, Particle Swarm Optimization with Mutation, Proc. of the IEEE
Congress on Evolutionary Computation, vol.2, pp.1425-1430, 2003

[37] T. Su, J. Jhang and C. Hou, A Hybrid Artificial Neural Networks And Particle Swarm Optimization
For Function Approximation, Int. J. of Innovative Computing, Information and Control, vol.4, no.9,
pp. 2363-2374, 2008.

[38] B. B. Thompson, R. J. Marks, M. A. El-Sharkawi, W. J. Fox, R. T. Miyamoto, Inversion of Neural
Network Underwater Acoustic Model for Estimation of Bottom Parameters using Modified Particle
Swarm Optimizer, Proc. of the Int. Joint Conf. on Neural Networks, pp.1306, 2003

[39] T-O. Ting, M. V. C. Rao, C. K. Loo, S-S. Ngu, A New Class of Operators to Accelerate Particle
Swarm Optimization, Proc. of the IEEE Congress on Evolutionary Computation, vol.4, pp.2406-2410,
2003

[40] J. S. Vesterstrøm, J. Riget, Particle Swarms: Extensions for Improved Local, Multi-Modal, and
Dynamic Search in Numerical Optimization, Master’s thesis, Department of Computer Science,
Univerisyt of Aarhus, 2002

[41] C. Wei, Z. He, Y. Zheng, W. Pi, Swarm Directions Embedded in Fast Evolutionary Programming,
Proc. of the IEEE Congress on Evolutionary Computation, vol.2, pp.1278-1283, 2002

[42] X. Yao, Y. Liu, Fast Evolutionary Programming, Proc. of the Fifth Annual Conf. on Evolutionary
Programming, pp.451-460, 1996

[43] X. Yao, Y. Liu, G. Liu, Evolutionary Programming made Faster, IEEE Transactions on Evolutionary
Computation, vol.3, no.2, pp.82-102, 1999

[44] W-J. Zhang, X-F. Xie, DEPSO: Hybrid Particle Swarm with Differential Evolution Operator, Proc.
of the IEEE Int. Conf. on System, Man, and Cybernetics, vol.4, pp.3816-3821, 2003

