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Abstract. Nonlinear Complex optimization problems are the key area of research in
the field of optimization. Evolutionary Algorithms (EAs) are applied to solve these op-
timization problems successfully. The EAs suffer a lot due to their slow convergence
rate, primarily due to evolutionary nature of these algorithms. It has been proved that
distribution of initial population into the search space effects the evolutionary algorithm
performance. This paper presents a novel initialization method for genetic algorithms, in
which opposite of the population is created. The best individuals from the population and
its opposite are selected as the initial population. This provides a better starting point
for search through the solution space. To increase the convergence speed of EAs, a prob-
abilistic excitation scheme for chromosomes is also introduced. This scheme tunes the
population effectively during the evolutionary process. The performance of the algorithm
is tested over suit of 10 functions with different dimensions. Opposition based Differen-
tial Evolution and Genetic Algorithms are used as competitor algorithms to compare the
results of the proposed algorithm. Various sets of experiments are performed. The results
show that the proposed method outperforms Opposition based Differential Evolution and
Genetic algorithms for most of the test functions.
Keywords: Genetic algorithms, Opposition based learning, Convergence speed, Exci-
tation rate

1. Introduction. Evolutionary Algorithms are applied to the optimization problems
successfully. The Genetic Algorithm (GA), one of the major techniques of EAs, was
proposed by J. Holland in 1970s [11]. The GA is simple and robust enough to be applied
to optimization problems. Evolutionary process of the GA requires only a few initial pa-
rameters for its execution. And it has been proven to attain superior performance to other
optimization techniques when it comes to the terms of convergence speed and robustness
over many real world problems like [13-15] and benchmark problems [7-9]. Almost all of
the population based optimization approaches like the GA, Particle Swarm Optimization
(PSO) and Ant Colony Optimization (ACO), etc. have slow convergence rate due to
the probabilistic/evolutionary nature of these algorithms. So, these algorithms can be
an excellent candidate for the acceleration of their convergence rate. If the convergence
speed is made fast enough, then these algorithms can be a preferable choice for use in
situation with real time restrictions. Many remedies have been proposed to accelerate

4263



4264 M. A. IQBAL, N. K. KHAN, H. MUJTABA AND A. R. BAIG

the convergence rate of these algorithms. One of the techniques used is Opposition-based
Learning (OBL). OBL was established by Tizhoosh [3]. OBL has been used to speed
up the reinforcement learning [3], differential evolution [4-6] and back-propagation neural
networks [10]. The foundation idea of OBL is to spawn the initial random solutions and
the opposite of the solutions for the better covering of the search space of the problem.
Opposite x′ of a point x is calculated by using the formula x′ = a+b−x, where a and b are
the upper and lower value of the domain of x. After that, the best solutions are selected
from initial population and its opposite and these solutions are used for the evolutionary
searching process. We also integrated this idea of OBL to speed up the convergence rate of
the GA. In our algorithm, initial population is selected from the initial random solutions
and its opposite population. During the evolutionary process of the algorithm, some of
solutions are selected probabilistically and opposite of these solutions are spawned. Then,
best of the selected solutions and their opposites are selected as the part of next popu-
lation. It has been stated in [6] where the random selection of solutions from a given
search space can result in exploiting the infertile areas of the search space. The use of
random population and its opposite, instead of only random selection, diminishes the
chances of exploring barren areas of search space [6]. It is empirically proven that the
use of opposite number is better than using random population or even using population
with double number of solutions [6]. Population initialization and Excitation schemes
are very simple and global that it can be integrated in other variations of Genetic Algo-
rithm and in evolutionary Algorithms as well. This paper presents a set of experimental
verifications of our proposed approach. Particularly, we investigate: 1) the convergence
speed; 2) robustness; 3) the population size; and 4) the setting of a newly added control
parameter, the excitation rate (defined in Section 3.4). For all these experiments, a set of
ten well-known benchmark test functions is employed. Furthermore, in order to evaluate
the algorithms, a set of performance measures has been utilized. These measures are
the average number of function calls (NFCs), success rate (SR), average SR, number of
unsolved problems, and the average of the best found solutions and the corresponding
standard deviation as calculated after particular number of function evaluations has been
reached. Organization of the remaining of this paper is as follows: the Genetic Algorithm
and the concept of OBL are briefly explained in Section 2; the proposed algorithm and
related terms are presented in Section 3; Section 4 consists of the performance measures
and experimental results.

2. Related Work. The opposition based learning is relatively new area of research and
it was first proposed by Tizhoosh [3] in 2005. Several opposition based learning algo-
rithms have been suggested after that. This includes Reinforcement Learning [3], Back
Propagation neural networks [10] and Differential Evolution [6]. Opposition based Differ-
ential Evolution [4] uses opposition based initialization scheme. In this method, opposite
of initial population is created and best from either is chosen, and it is followed by the
standard process of differential evolution. The actual process of Differential Evolution is
augmented by the opposition phase. It has been proven that [6] OBL process increases
the convergence speed and accelerates the evolutionary process. An additional method of
opposition based Differential Evolution with jumping rate was proposed in [6]. Tizhoosh
et al. suggested in this paper a constant jumping rate and the individuals in a population
are allowed to jump once the probability is met. Best from either of the two was chosen
as new population member. This facilitates faster convergence during the evolution phase
and lesser fit population members have a chance to tune themselves. It is noted that the
jumping rate has an effect of accelerating the convergence process until the population
starts to converge. Once the population starts converging, it has rather unpleasant effect
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as it permit individuals to jump away from the optimal solution. So, to counter this
problem a method of using variable jumping rate was proposed in [5]. In this method,
two variable jumping rates were proposed, one represented higher jumping rate during
exploration and lower during exploiting phase. Other acted opposite to this. Both of
them were used to analyze the effects of Generation jumping during the evolution. Op-
position based learning had been explored using the differential evolution. Yet the idea
needs to be explored using other evolutionary algorithms. It can also be applied to Swarm
based algorithms. The idea of using opposition in genetic algorithm was also proposed
in [3]. Genetic Algorithm has been used to tune the network controller for the complex
electromechanical process [15]. Multiobjective version of the genetic algorithm is applied
to solve this problem. This is also used to optimize Radial Basis Function Networks [16].
We have used the opposition based excitation of population for of GAs. GA can perform
better in terms of efficiency, i.e., ability of finding the global optimum, and number of
function evaluations, or vice versa [2]. Function optimization has been a task of interest
to study behavior of evolutionary algorithms. Evolutionary algorithms tend to perform
well for the optimization problem. We tackled function optimization problem to study
the effectiveness, and comparison of Opposition based Genetic Algorithm with Classic
Genetic Algorithm. Ten different functions were have been used for optimization and
comparison of Genetic Algorithms and Opposition based Genetic Algorithm.

3. Proposed Method.

3.1. Opposition-based learning and genetic algorithm. The perception of OBL
method is founded upon a common observation that, in actual life, people oppose one
another. The strengths and weaknesses of these opposing ones are relative, i.e., the
opposition of a weak person is strong relative to him. Similarly traits are often opposite
to each other and in the same way opposition of a weak trait is usually strong one.
In OBL method, it generate a second set of solutions which is opposite of the original
solution set so that our probability of choosing better solutions can increase. In this paper,
we propose an implementation strategy of opposition based learning method for genetic
algorithm. In proposing this technique, we have introduced gene excitation as a fourth
operator along with elitism, crossover and mutation. Gene excitation is used to elevate
any precise solutions based on probability. Opposite of a number x can be calculated
using the following equation.

x′ = a+ b− x (1)

where x ∈ R within an interval of [a, b]. In the case of multidimensional vector xi, its
opposite vector x′

i will be calculated as:

x′
i = ai + bi − x (2)

This opposite vector will be calculated using the boundaries [ai, bi].

Figure 1. Calculating opposition of a point

Similarly, an opposite position in the search space can be defined as a point where all
the dimensions of this point are replaced by their respective opposites. Any point in hyper
dimensional space has a unique opposite point. The solution set for a given optimization
problem encloses a multiple number of solutions. The population of genetic algorithm is
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composed of chromosomes. A chromosome can be viewed as a potential solution among
a set of solutions (set of chromosomes) for the given problem. A simple GA is explained
in the following way.

1. Create a random population pool.
2. Initialize operator probabilities.
3. Repeat steps 4-6 until termination condition.
4. Evaluate fitness of each individual.
5. Perform Crossover based upon crossover probability.
6. Perform Mutation based upon mutation probability.

Create new population from children and parent population Opposite of a chromosome
can be defined in a similar manner. Let our specific problem is to optimize a function
f(x). GA will use f(x) as the fitness function to evaluate solution quality. f(x) is a multi-
dimensional minimization function. Let Ci = (x1, x2, . . . , xn) be a chromosome from an
n-dimensional space and xi ∈ [ai, bi] ∀i ∈ 1, 2, 3, . . . , n. The opposite of this chromosome
will be C ′

i = (x′
1, x

′
2, . . . , x

′
n). The boundary values ai and bi are calculated dynamically

so that we are able to explore new regions while at the same time being able to contain
when solutions seem to converge. Reproduction operators of GA have a tendency to
expand the boundaries of search. Fitness function is the only mechanism to contain this
expansion. Here, by calculating the boundary values dynamically, we have introduced a
new mechanism in GA along with fitness function to contain the search space while at the
same time enabling us to explore more regions. In this way, we shall continuously have a
contracting solution space while being able to explore more. The step by step execution
of opposition based GA is described in Figure 2. Brief description of main elements of
this algorithm is given in following subsection.

3.2. Chromosomes, opposite chromosomes and initialization block A. As we
stated previously, the GA has a population of chromosomes which work as solution set.
A population of chromosome is used during the evolutionary process of this algorithm.
Population is initialized by using the random initialization technique. Every chromosome
is an n-dimensional real valued vector where n represents the n-dimensions of the input
vector used for the problem at hand. Each chromosome of the population is evaluated
using the fitness function (f(x)) which is to be optimized. Afterward, opposites of these
chromosomes are calculated using initial dimension boundaries. The method of calculating
these opposites is elaborated in Section 3.1. So, each chromosome Ci will have an opposite
chromosome Ci,o. Each member of the opposite population is evaluated using the same
function as used for actual population. After this process, we have a set of chromosomes
and a set of opposite of chromosomes. Actual population and the opposite population are
merged into a single population. Initial population for genetic algorithm is selected by
choosing the m-best chromosomes of the merged population, where m is the population
size for GA.

3.3. Genetic algorithm block B. At the completion of first stage described in Section
3.2, we have a set of best solutions. Reproduction operators like mutation, crossover
and elitism are applied on this set of solutions. Fitness criterion is the value of function
calculated using the chromosome. The reproduction operators are described as follows.

i Elitism: Most fit individual of the population is selected and included as an indi-
vidual for the next generation of the algorithm. Selecting elite individual guarantees
that solution quality will never degrade in next coming generations. In the proposed
technique, we selected a single chromosome as the elite member.
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Figure 2. The proposed algorithm

ii Crossover: Crossover is the process of combining traits of two different individ-
uals to generate solutions that can be of better fitness then parents. Two parent
individuals are selected from the current population of the set to generate a new
offspring. Number of offspring chromosomes is determined using the crossover prob-
ability. Roulette wheel selection is used for selecting the parent individuals. A two
point crossover is used for performing this operator.

iii Mutation: Individuals are perturbed probabilistically to bring a change in the in-
dividuals. Crossover cannot introduce any new features since it merely combines the
existing features in anew generation. Using mutation operator, there is a probability
that some new features might appear due to change in the chromosome. Gaussian
mutation is used to mutate the individuals. Mutation is performed on the basis of
pre-determined mutating probability.

The above three operators are used together to form a population of new solutions.
Next solution set is formed by selecting best individuals from the parent population and
this new population.

3.4. Excitation block C. Dimension Boundaries are updated by calculating the maxi-
mum and minimum value of each dimension. For each of the individual in the population
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a random value r is generated. If the value r is less than the excitation probability then
opposite of the individual is calculated. This opposite individual is evaluated using the
fitness function. Comparison of the fitness of original and opposite chromosome is made
and the best is kept as member of next population. This process is executed for ev-
ery member of the currently selected population. Instead of using the static dimension
boundaries, the values in the interval [asi , b

s
i ] are used to calculate the opposite of these

chromosomes. To create the opposite of the population, we take the opposite Co,i of each
member of the population chromosome Ci. The opposite point Co,i of the chromosome Cl

is calculated as below.

Co,i = ask + bsk − Ci,k (3)

In above equation, Ci,k represents the kth dimension of the kth chromosome Ci, and the
terms ask and ask denote the maximum and minimum value of the kth dimension respectively
over all the current population. The term Coi,k denotes the opposite-value of chromosome
Ci in the kth dimension.

4. Experimental Results. A suit of test functions including ten global optimization
functions are used to assess the performance of Opposition based GA. The functions used
for optimization process are mentioned in Table 9, along with their optimum values and
dimensionality.

4.1. Performance measures. Following performance measures were used to assess the
performance of GA and Opposition Based GA. These performance measures were used
for comparison of ODE in [5,6].

4.1.1. Number of function calls. Genetic Algorithm (GA) and OGAE are compared by
measuring Number of function calls (NFC). The termination criterion is to achieve a
value smaller than the target value. Higher convergence speed is measured by having
smaller number of NFCs. NFC is the most frequently used metric in literature. NFCs
are averaged over 50 iterations for each of the global optimization function. So, for the
comparison of the NFCs of the two algorithms Acceleration Rate (AR) [6] is calculated.
AR is described by the following equations for the NFCs of GA and OGAE.

AR =
NFCGA

NFCOGAE

(4)

If AR > 1, it means OGAE is converging faster than the GA.

4.1.2. Success rate. This can be defined by number of times the algorithm able to achieve
the target value to number of total trials [6].

SR =
Number of times achieve target value

total number of runs
(5)

Average success rates SRAve and average acceleration rate ARAve are also calculated
for n benchmark test functions using the following definitions [6].

SRAve =
1

n

n∑
i=1

SRi (6)

ARAve =
1

n

n∑
i=1

ARi (7)

Following parameter values are used for GA and OGAE. It is mentioned in the experi-
ment whenever value of a parameter is changed.
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Table 1. Parameter values used in experimentation

PARAMETER VALUE

Population size Ps 30
Mutation rate 0.5
No of generation 200
Crossover rate 0.8
No. of Elite individuals 1
Target fitness 0
Target Value 1.00E-02
Excitation rate 0.3

All the parameters were selected empirically. Parameters values for all the experiment
will remain same unless mentioned otherwise. For all the experiments, the values are
reported by averaging them over 100 runs. Extra NFCs for opposition initialization and
during excitation phase are also counted.

4.2. Results. A broad set of experiments are performed and categorized as follows.

1. Effect of performance and robustness are compared for OGAE and GA in Section
4.2.1.

2. Effect of Dimensionality of problems is evaluated in Section 4.2.2.
3. Effect of population size is investigated in Section 4.2.3.
4. Setting of Excitation rate for the OGAE is discussed in Section 4.3.4.

4.2.1. Comparison of OGAE and GA. First of all, we need to compare the parent algo-
rithm GA with OGAE in terms of convergence speed and robustness. Speed of the system
is checked by the number of function calls needed to achieve target value. Robustness is
addressed by seeing for how many functions an algorithm achieve the target values. The
results of solving 10 benchmark functions (see Table 9) are given in Table 2. The best
result of the NFCs and the SR for each function are highlighted in boldface. The average
success rates and the average acceleration rate on 10 test functions are shown in the last
row of the table. OGAE outperforms GA on 7 test functions, while GA surpasses OGAE
on 3 functions. Average acceleration rate is 1.30, which means OGAE is on average 30%
faster than GA. While the average success rate for OGAE is 0.91 and for the GA it is
0.61. OGAE is more successful than GA when it is compared on the basis of Success
Rate. Some sample graphs for the performance comparison between GA and OGAE are
given in Figure 3 and Figure 4. These curves (best solution versus NFCs) show that how
OGAE converges faster than GA toward the optimal solution. Other than average NFCs,
minimum, maximum and median NFCs are also reported in the table.

Results analysis: With the same control parameter settings for both algorithms and
fixing the excitation rate for the OGAE (Er = 0.3), their SRs are comparable, while
OGAE shows better convergence speed than GA (30% faster in overall). It can be clearly
scene through the results the OGAE achieve the same robustness while consuming less
number of function calls. The excitation rate is an important control parameter which,
if optimally set, can achieve even better results. The discussion about this parameter is
covered in Section 4.2.4.

Figure 3 and Figure 4 represent two graphs that show convergence behavior of Oppo-
sition based Genetic Algorithm and simple Genetic algorithm for optimization of Rosen-
brok’s valley function. This can be seen that Opposition based Genetic algorithm con-
verged quickly around 100.
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Figure 3. GA result for Rosenbrok’s valley function F4

Figure 4. OGAE result for Rosenbrok’s valley function F4

Table 2. Comparison of OGAE and GA on the basis of number of function
calls (NFCs)

F D OGAE GA
Avg. Min Max Med SR Avg. Min Max Med SR AR

F1 30 4388±2015.36 2520 15540 5520 0.98 61142781.10 1500 11760 4050 0.96 1.39
F2 30 4589±2361.62 2460 18420 6570 1 7517±3685.27 1140 12000 4020 0.98 1.63
F3 20 4727±2175.49 2100 16080 5610 1 6202±2806.16 1680 12000 4290 0.97 1.31
F4 30 11448±1559.12 2160 19260 8790 0.23 11053±6266.16 5100 12000 12000 0.2 0.97
F5 10 4094±1615.75 1920 14340 5460 1 5828±2329.65 1080 8880 3720 0.97 1.42
F6 30 3840±1462.62 2040 12240 5070 1 5470±2094.94 1440 8400 3600 0 1.42
F7 30 1225±1418.90 180 4380 870 1 981±676.54 120 8100 720 0.03 0.8
F8 30 4125.6±1820.78 1814 16148 4834 0.95 5364.2±2288.68 1500 12000 3690 0.96 1.3
F9 2 13430±3800.09 420 19320 1794 0.95 12000±0.0 12000 12000 12000 0.04 0.89
F10 4 548±381.43 240 6660 780 1 1037±921.15 180 2940 480 1 1.89

Ave. 0.91 Ave. 0.61 1.3

4.2.2. Effect of problem dimensionality. In order to investigate the effect of the problem
dimensionality, the same experiments are repeated for dimension Dnew = D/2 and for
Dnew = 2∗D for each scalable function from our test set. All other control parameters are
kept unchanged. This experiment is necessary to see the algorithm’s performance over
the problems having different dimensions. Also the experiment shows the performance of
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Table 3. Number of function calls for DNEW = D/2 and DNEW = 2∗D

F DNEW OGAE GA
Avg. Min Max Med SR Avg. Min Max Med SR AR

F1 15 32301252 1666 12250 3048 1 2392893 400 8800 2300 1 0.74
60 253879560 9700 48376 23857 0.96 200167541 7200 40000 18300 0.98 0.78

F2 15 3317965 920 6456 3123 1 2600919 1200 7000 2400 1 0.78
60 262889691 9130 48348 23787 0.96 211787994 9000 40000 19300 0.95 0.8

F3 10 2253556 672 4092 2358 1 1672470 400 2800 1600 1 0.74
20 113093613 4480 23318 10615 1 112004585 4400 28600 10900 1 0.99

F4 15 111447745 4514 46916 7606 1 395543172 14400 40000 40000 0.02 3.55
60 465125854 12228 48542 48195 0.12 39946540 34600 40000 40000 0.01 0.85

F5 5 1053280 658 1686 1145 1 710254 400 1800 600 1 0.67
20 4016954 2368 7922 4025 1 3158650 2200 6400 3000 1 0.78

F6 15 3148615 1868 4802 3081 1 2430495 800 3400 2400 1 0.77
60 179406056 9802 43824 16852 1 157865477 7200 38000 14900 1 0.87

F7 15 1003287 646 1658 923 1 758281 400 1600 800 1 0.75
60 21831330 674 12766 1905 1 27444684 400 40000 1600 0.99 1.26

F8 15 3144536 1876 5282 3089 1 2408649 1200 6200 2200 1 0.77
60 234948729 10812 45038 21789 1 192766938 6800 40000 19100 0.98 0.82

Ave. D/2 1 0.87 1.1
Ave. 2D 0.88 0.86 0.89
Ave. 0.94 0.87 0.99

algorithm when it is applied to same problem with different level of difficulty in terms of
dimensions. Results for and are given in Table 3 for 8 test functions.

Table 4. Optimal values achieved

OGAE GA
Runs Mean Min Max Med Mean Min Max Med
F1 0.0 ±0.0 0 0.005 0 0.0±0.00 0 0 0
F2 0.02 ±0.14 0 1 0 0.03 ±0.22 0 2 0
F3 0.00 ±0.0 0 0 0 0.01 ±0.10 0 1 0
F4 11.98 ±20.77 0 74.84 0 61.56 ±57.91 0 283.32 29
F5 0.0 ±0.0 0 0 0 0.00 ±0.0 0 0 0
F6 0.0 ±0.0 0 0 0 0.0 ±0.0 0 0 0
F7 0.004 ±0.0 0 0.01 0.004 0.04 ±0.0 0 0.01 0.002
F8 8.88E-16±0.0 8.88E-16 8.88E-16 8.88E-16 7.17E-03±0.07 0 0.72 0
F9 0.43 ±0.68 0.003 4.45 0.145 1.15 ±1.07 0.03 4.45 0.78
F10 0.0 ±0.0 0 0 0 0.0±0.0 0 0 0

According to the obtained results, OGAE outperform GA on 2 test functions, while
GA outperforms OGAE on remaining 8 functions in terms of NFCs. Both algorithms are
able to solve all the problems before meeting the maximum NFCs, but SR values are not
same for all the functions. The average AR is equal to 1.1 for D/2 dimensions, denoting
that that OGAE performs 1% faster than GA but achieving Success Rate equal to 100%,
while GA was able to achieve the Success Rate equal to 87% only. The average AR is
equal to 0.89 for 2∗D dimensions, denoting that that OGAE performs 11% slower than
GA but achieving Success Rate equal to 88%, while GA was able to achieve the Success
Rate equal to 86%.
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Table 5. Comparison of GA and OGAE (population size = 50)

F D OGAE GA
Avg. Min Max Med SR Avg. Min Max Med SR AR

F1 30 6281±2693 2386 15670 5754 1 5437±2825 2000 18600 5000 1 0.87
F2 30 7078±3694 2596 24194 6339 0.99 6091±3137 2100 20000 5050 0.99 0.86
F3 20 6077±2721 2852 21706 5493 1 2896±1662 1200 14600 2600 1 0.48
F4 30 17791±7571 3086 24306 24010 0.47 19741±1320 11200 20000 20000 0.06 1.11
F5 10 5737±2878 2404 18136 4789 1 1004±304 200 2100 1000 1 0.18
F6 30 5292±2138 2408 13396 4788 1 4524±1737 2000 11700 4050 1 0.85
F7 30 1195±838 340 6008 1013 1 1137±945 200 6000 900 1 0.95
F8 30 24099±73 23958 24292 24090 0.7 5179±2401 2000 12800 4500 1 0.21
F9 2 19753±9060 216 24310 24086 1 18816±4710 100 20000 20000 0.06 0.95
F10 4 3881±973 440 24214 1628 0.94 1483±1578 300 9000 1100 1 0.38

Ave. 0.91 Ave. 0.81 0.68

For the 2∗D dimensions, OGAE could not be able to achieve more promising results but
able to outperform GA in terms of SR by only 2%. The average SR for GA and OGAE
for dimensions (D/2 and 2∗), are 0.87 and 0.94, respectively.
Results analysis: It is shown by the Table 4 that OGAE perform better in terms of

Success Rate. Declining the overall SR for GA and OGAE was not surprising because by
doubling the problem dimension, algorithms could not solve the problem sometimes before
reaching the upper limit of NFCs (which is a fixed number for all experiments). However,
as seen, OGAE performs better for high-dimensional problems and the low-dimensional
problems in terms of SR. OGAE can perform more gracefully than GA for the higher
dimensional problems.

Table 6. Comparison of GA and OGAE (population size = 200)

F D OGAE GA
Avg. Min Max Med SR Avg. Min Max Med SR AR

F1 30 10822±3485 2386 15670 5754 1 7724±2507 4800 22800 6800 1 0.71
F2 30 12465±6594 2596 24194 6339 1 8876±2854 4400 17200 8000 1 0.71
F3 20 7338±1416 2852 21706 5493 1 5640±1139 3600 10000 5600 1 0.77
F4 30 45543±2472 3086 24306 24010 0.92 79724±2760 52400 80000 80000 0.01 1.75
F5 10 3206±770 2404 18136 4789 1 2336±587 800 3600 2400 1 0.73
F6 30 10090±1619 2408 13396 4788 1 7980±1402 5600 14400 7600 1 0.79
F7 30 2289±589 340 6008 1013 1 1788±572 800 3200 2000 1 0.78
F8 30 9901±2041 23958 24292 24090 1 7724±1202 5200 13200 7600 1 0.78
F9 2 25823±1653 216 24310 24086 0.75 41528±3945 400 80000 80000 0.49 1.61
F10 4 5423±2314 440 24214 1628 1 3252±3471 1200 28000 2400 1 0.6

Ave. 0.97 Ave. 0.85 0.92

4.2.3. Evaluation of the effect of population size. By varying population size, the capa-
bilities of algorithm for exploration can be scene. In order to investigate the effect of
the population size, the same experiments (conducted in Section 4.2.1 for Ps = 100) are
repeated for Ps = 50 and Ps = 200. The results for Ps = 50 and Ps = 200 are given in
Table 5 and Table 6, respectively. For Ps = 50, the average SR for GA and OGAE is 0.81
and 0.91, respectively (OGAE performs better than GA). However, GA could achieve the
SR of 0.06 for both f4 and f9 and the OGAE was able to achieve SR of 0.47 and 1 for f4
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and f9 respectively. GA was able to outperform OGAE for only function f10 by achieving
SR of 1 as compared to SR of OGAE equal to 0.94. For all other functions the SR values
of GA and OGAE are equal. AR for all the functions is 0.68, showing that OGAE has to
perform more function evaluations than GA to locate the optimal value of the functions.
However, OGAE outperforms GA on two functions, whereas GA outperforms OGAE on
a function only. And for all other functions, the results of both functions are comparable
in terms of SR. OGAE performed much better in terms of average SR by achieving 0.91
as compared to 0.81 of the GA. And for the Ps = 200, OGAE outperforms GA on all the
functions by achieving better SR values. The average SR of OGAE is 0.97 as compared to
0.85 of GA. For the function F4, GA could solve it only 4% of the time and OGAE solve
it 92% of the time. AR value is equal to 0.92, showing that OGAE takes more NFCs to
solve the problems, which can be the results of more evaluations of excitation rate during
the evolutionary process.

Results analysis: According to the results of Sections 4.2.3, for the majority of func-
tions, OGAE performs better when the dimension of the problems increases. On the
other hand, for higher dimensional problems a larger population size should be employed.
According to the results of this section, OGAE performs better for larger population sizes.

Table 7. Number of generations for optimization

Func. OGAE GA
Avg Max Min Med Avg Max Min Med

F1 67.61 ±31.64 176 25 60 69.02 ±33.59 196 25 68
F2 82.79 ±40.66 200 27 74 72.71 ±39.36 200 19 67
F3 68.00 ±30.50 171 22 61.5 72.38 ±36.26 200 28 72
F4 121.70 ±68.80 200 25 95 188.34 ±25.98 200 85 200
F5 63.84 ±26.49 160 20 61 67.04 ±26.93 148 18 62
F6 59.78 ±22.52 133 23 56.5 200 ±24.38 140 24 60
F7 10.22 ±7.23 44 2 9 20.42 ±23.65 135 2 12
F8 63.15 ±27.14 191 21 57 68.76 ±30.35 200 25 62
F9 190.38 ±42.15 200 4 200 200 ±0.00 200 200 200
F10 10.92 ±10.27 74 3 8 9.91 ±6.36 49 3 8

4.2.4. Finding the optimal value of excitation rate for functions. In the proposed algo-
rithm, a new control parameter Er is added to GA’s parameters. Although this parameter
was fixed for all experiments, the performance of OGAE can vary for different values Er.
The Excitation rate for our current study was set to 0.3 without any effort to find an
optimal value. In some trials, we observed that an excitation rate higher than 0.6 is not
suitable for many functions and causes a premature convergence or an unusual growing of
the number of function evaluations. On the other hand, excitation rate equal to 0 means
no excitation at all. By this way, simply the mean value of 0 and 0.6 (Er = 0.3), was
selected for all conducted experiments as a default value. So, we try to find the optimal
value of excitation rate for all the optimization functions at hand. A new question arises
here that for choosing optimal excitation rate which quality measure should be used.
There are two choices available, one is SR and the other is NFCs. We cannot prefer one
parameter over the other simply. We used the quality measure Success Performance SP
as introduced [12].

SP =
(mean (NFC For Successfull Runs))

SR
(8)
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Experiment was performed by varying the value of excitation rate from 0 to 0.6 by an
increment of 0.1, by keeping the values of all other parameters same. The optimal values
of the excitation rate with respect to Success Performance SP, for all the functions are
reported in the Table 8. It can be noted from the Table 8 that for all the low dimension
functions, excitation rate value is low except F9. And this is the function for which the
performance of OGAE is not as good as in other functions. That’s why higher excitation
rate was needed to improve the performance of OGAE over F9. For all the high dimension
functions the excitation rate was set to 0.2 or 0.3 mostly.

Table 8. Optimal excitation rate ErOP values w.r.t. SP

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
D 30 30 20 30 10 30 30 30 2 4

ErOP 0.3 0.2 0.1 0.4 0.2 0.2 0.2 0.2 0.5 0.3

Results analysis: Excitation rate adds extra NFCs to the evolutionary process step,
and however, it is observed that it speed-up the convergence rate of algorithm. So, what
should be the specific excitation rate for the algorithm is to be determined carefully, or it
should be chosen generally for all kinds of problems. It is observed using this experiment
it is observed that like GA’s other control parameters, the optimal excitation rate should
be chosen empirically. Low excitation rates are recommended for the high dimension
problems as can be seen in the Table 8.

5. Conclusions. It has been observed that Opposition Based Genetic Algorithm has
performed better than Genetic Algorithm. It achieved faster convergence and higher
success rate, due to its ability to represent the search space unevenly. It was also compared
by genetic algorithm with random chromosomes, and however, Opposition based Genetic
Algorithm performed better, confirming that this acceleration is not merely due to more
population members or their comparisons. This work can be further extended for variable
Excitation rate and other complex problems can used to study the effect of opposition.
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