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Abstract This research presents an optimization technique for route planning and
exploration in unknown environments. It employs the hybrid architecture that implements
detection, avoidance and planning using autonomous agents with coordination capabilities.
When these agents work for a common objective, they require a robust information
interchange module for coordination. They cannot achieve the goal when working
independently. The coordination module enhances their performance and efficiency. The
multi agent systems can be employed for searching items in unknown environments. The
searching of unexploded ordinance such as the land mines is an important application
where multi agent systems can be best employed. The hybrid architecture incorporates
learning real time A* algorithm for route planning and compares it with A* searching
algorithm. Learning real time A* shows better results for multi agent environment and
proved to be efficient and robust algorithm. A simulated ant agent system is presented for
route planning and optimization and proved to be efficient and robust for large and complex
environments.

Keywords Ant colony optimization . Route planning . Autonomous agents .

Multi agent system . Swarm intelligence

1 Introduction

The route planning is an important problem in artificial intelligence research and has been
addressed over the years and still considered to be a challenging area and requires efficient
and robust technique to solve [13, 14, 18, 19]. Planning is a process in which a planner
constructs plans that achieve its goals, and then executes them. When the state space is
known and accessible, a planner can use the percepts provided by the environment to build
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a complete and correct model of the current state space of the solution. When a goal is
provided to the planner, it can call a suitable planning algorithm to generate a plan of
action. This research implements A* and Learning Real Time A* algorithm using hybrid
frontier based architecture and presents a simulated ant agent system for route planning and
optimization.

Multi agent exploration of an unknown environment is an instance of a class of
problems where autonomous agents are employed to explore the environment. An
important concern in exploration is how to cover an unknown area efficiently. It can be
performed by using a random search; the agent explores around randomly using a random
potential field. The statistics indicate that it can cover the entire area after a large period of
time. Another reactive method can employ a repulsive field and the agent is repulsed by
areas that have been recently visited. It can be performed by utilization of a repulsive
field generated by every visited cell in a coarse occupancy grid or for every previous
heading. This behavior drives the agent towards the new area when combine with
random potential field. Another method based on behavioral approach is to exploit
evidential information in the occupancy grid. Many cells on the grid become unknown as
the agent explores the environment. The agent moves to the nearest of unknown cells as
a goal and attempts to relocate towards it. As it moves to the goal along with avoiding
obstacles, new sensor readings will update the occupancy grid. It reduces the amount and
location of unknown areas by creating a new goal. The hybrid frontier based architecture
Fig. 1 is presented that implements a hybrid of mapping, perception, detection, avoidance
and route planning.

Ant colony optimization [4] and particle swarm optimization [4] are two major
techniques in the family of swarm intelligence. In ACO, ants are able to find their way to
and from food, and the method by which they do it is modeled in a new approach called the
ant colony optimization algorithm. It is a population based approach for optimization
problems. A number of artificial “ants” construct solutions to the problem at hand by the
repeated selection of parts from a predefined set of solution components. The only
communication between ants is called stigmergy [3] i.e. indirect communication using
pheromone. These ants select components probabilistically biased by heuristic information
(a problem specific heuristic measure of a component’s utility) and pheromone information,
and directly associated with the solution components. To simulate the real-world process by
which ants find the shortest path to a food source, electronic ants deposit pheromone on
components in proportion to the quality of the solutions that contain them. The physical
existence of simulated ant agents is conceived in the form of a simulation that runs on
computing devices. To say that they are autonomous computational entities implies that to
some extent they have control over their behavior and can act without the intervention of
other systems. These ant agents are goal driven and can also execute tasks in order to

 
 

Map
Acquisition

Perception
Building  

Object
Detection

Route
Planning

Obstacle
Avoidance

Fig. 1 Hybrid frontier based
architecture

Multimed Tools Appl



complete design objectives. The ant agents use the modified ant algorithm for finding
optimum route between start and the goal.

The following are the major contributions:

▪ A hybrid architecture is presented for exploration and planning
▪ A simulated ant agent system is presented for route generation
▪ Route optimization and repairing technique is introduced
▪ Exploration and planning in an unknown environment is presented

The Section 2 describes the problem formulation, Section 3 presents the related work,
Section 4 gives the survey of coordination strategies, Section 5 presents the hybrid frontier
based architecture, Section 6 presents a simulated ant agent system for route planning and
optimization, While Section 7 describes the experimental details along with results and
finally Section 8 presents the conclusion.

2 Problem formulation

The route planning and optimization of routes have been considered as NP complete
problem [2]. Non-deterministic polynomial time complete is a complexity class of problems
with two properties, i.e. any given solution to the problem can be verified quickly and if the
problem can be solved in polynomial time then every problem in NP class can be solved.
Such problems are usually tackled by approximation algorithms [2] and meta-heuristic
approach is one of them.

An offline planner generates the complete plan before the task is performed [19].
The traditional offline planners often assume that environment is completely known and
they try to find the plan based on shortest distance criteria. They cannot handle dynamic
environments and are limited to their initial plan. When environment remains constant
throughout the planning process, the route planning is called static offline route planning.
A* [15], RTA* [7–10] are the algorithms that belong to this family. The planner is
provided with the complete picture of the environment along with the starting and
destination points. The destination point remains constant throughout the planning
process. Static environments are those environments which, once discovered completely,
do not change with respect to the environment components. The static environment can be
known, partially known [17] or unknown and requires different approach for the each
category.

On the other hand, an online planner generates a partial plan during the execution of the
task. Online planners are mostly used for dynamic route planning. When the state space
changes during the planning phase, the route planning is called dynamic online route
planning [19]. Online planning approach is based on the assumption that the agents would
be dealing with dynamic environment, and it would neither be feasible nor practical to re-
plan the complete route. The online planners are mostly heuristic in nature as the problem
instance reveals incrementally and often prone to slow response time. They require
sophisticated algorithmic approach to find the shortest route.

There are different approaches for online route planning. Some of the online planners
generate route offline initially and then modify it during task execution. Some do planning
gradually with task execution. While there are some planners that always hold a backup
plan as prediction and when environment changes or previous plan fails, they start
executing the backup plan. The unknown and dynamic environments are most difficult to
deal. The tracking of moving target by ACO can be considered as dynamic online planning
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problem. There are number of constraints to be considered during planning phase. The
obstacle avoidance and finding the shortest route for each changing goal are the complex
tasks to deal with.

3 Related work

Brian Yamauchi [20, 21] presented a Frontier-based exploration technique for the
exploration of unknown environments. While many robots can navigate using maps, few
are equipped with the capability to map their own maps. A given territory is required to be
mapped in advance undergoing a mapping process, providing either the exact locations of
obstacles as in the case of metric maps or a graph representing the connectivity between
open regions as in the case of topological maps. As a result, most mobile robots become
unable to navigate efficiently when placed in unknown environments. Exploration has the
potential to enable robots to rule out this limitation. Exploration is an act of navigating
though an unknown environment while constructing a map that can be used for
subsequent navigation. A plausible exploration is one that results in generating a complete
or nearly complete map in reasonable amount of time. The central question in exploration
is: Given what you know about world, where should you move to gain as much new
information as possible? Initially you know nothing except what you can see from where
you are standing. The intention is to build a map that describes as much of the world as
possible as quickly as possible with maximum information. The exploration process
transforms unknown region to a known region by gradually moving towards the unknown
regions.

Another method of deciding how to explore space is to have the agent build a reduced
Generalized Voronoi Graph (GVG) [1] as it moves through the world. As the agent moves,
it attempts to maintain a path that places it equidistant from all objects it senses. Essentially,
the agent tries to move ahead but stay in the “middle” or at a tangent to surrounding
objects. This path is a GVG edge, the same as would be generated by decomposing the
space into a Voronoi graph. Generating and following the path is straight forward to do with
a behavior. When the agent comes to a dead, there are multiple GVG edges that the agent
could follow. But in this case, the agent can perceive that both of these edges end at objects,
so there is no reason to follow them. The agent can then backtrack along the path it had
been on, either to the start or to another branch. If the agent encounters branches in the
GVG edges, it can choose one at random to follow.

H. Mei et al. [13] used the combination of artificial potential field (APF) [12] with ACO
for path planning of a robot in dynamic environment. This paper presents the concept of
local and global path planning. The pheromone was used to prevent artificial potential field
from getting local minimum and handles the real-time demand. The main drawback of APF
is the convergence to local minimum. It integrates local and global planners to cater the
dynamic environments. ACO is used for global route planning based on static environment
information and then APF is used to program the local route. Instead of using the same
level of pheromone field initially, they use different pheromone fields based on the distance
of that current point from the obstacles. This reduces the convergence time for the ACO.
They also use the information regarding obstacle-avoidance and smoothness of the route.
This technique uses the obstacle-avoidance in objective function along with smoothness but
lacks the information of dynamic obstacles. It opens the feasibility of collision between
robot and moving obstacles. For real-time dynamic environments, this method needs to be
improved. It performs better then the evolutionary method.
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Another approach in this direction is the use of reinforcement learning along with ACO
algorithm for obstacle avoidance and route planning for mobile robots presented by N. A.
Vien et al. [18]. This paper presents path planning based on Ant-Q algorithm for static and
dynamic obstacle avoidance. It is based on the metaphor of ant colonies. They use three
methods for delayed reinforcement updating. Ant-Q algorithm performs better than the
genetic algorithm with higher convergence rate. It is inspired from Q-learning and ant
behaviors. It requires a good cost function for the moving path along with effective Ant-Q
value method. The cost function helps in choosing collision free and shortest routes while
updating method helps to find optimum solution with faster convergence. It uses pseudo-
random proportional action choice rule as state transition rule along with using three
categories for updating, i.e. local updating, mixture updating and global updating for
optimum solutions. They compared the results with ant colony system and genetic
algorithm. They use limited variable environments in their experiments and require more
diverse and complex environments. The paths generated are not so smooth and requires
testing in different environment representations.

4 Coordination strategies

Frontier-based exploration directs exploring agents on frontiers i.e. known space adjacent to
unknown space. Frontier-based exploration can be extended to multiple agents. The
obvious advantage of using multi agents is the inherited concurrency, which can greatly
reduce the time needed for the exploration mission. Coordination among multi agents is
necessary to achieve efficiency in the agent exploration or coverage. The performance of
the exploration directly depends on the coordination. By increasing the number of agents
without incorporating proper coordination mechanism will not result in improved
exploration time. This research explores and incorporates the coordination mechanism for
improved performance using hybrid frontier based architecture. The brief description of
different coordination techniques are given below. The agents can communicate with each
other and shared the maps so that better coordination can be achieved.

Presented in [21], this strategy preaches the idea of multi agents that share perceptual
information such as newly explored spaces, maintaining their individual map. Based on
their individual maps they independently deliberate about their successive destinations.
Employing multi agents enable an individual agent to benefit of information from other
comrade agents involved in the joint exploration process. Each agent has its own map that
models its knowledge or belief of the environment. Whenever an agent arrives at a new
frontier, it sweeps its sensors and constructs a sub map within its sensory footprint that is a
map representing its current surroundings. The agents map is updated with this sub map and
is broadcast to comrade agent in less time. Presented in [11], Formation based coordination
agents methodically sweep the unknown space by advancing in close lines of formation.
The formation is broken and restored as necessary whenever new obstacles are
encountered. This strategy requires a very tight coordination among all agents.

Presented in [5] this coordination scheme is based on potential fields, proposes a
deploying strategy in which a cluster of agents is evenly distributed over the environment
by considering repulsive forces: agents repel each other and obstacles repel agents. The
agents keep moving until repulsive forces cancel each other. Presented in [16], this
technique subsequently applies a well-known unsupervised clustering algorithm (K-Means)
in order to fairly divide the remaining unknown space into as many disjoint regions as
available agents.
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5 Hybrid frontier based architecture

The hybrid architecture [22, 23] used demonstrates the exploration of an unknown
environment by a group of autonomous agents using Frontier-based exploration technique.

The two main actors of the simulation as shown in Fig. 2 are the planner agent and the
coordinator agent. The anatomy and capability of the two agents (1) Planning agent and (2)
Coordinating agent is given below:

5.1 Planning agent anatomy

The Anatomy of an agent is composed of its belief and its behaviors/capabilities.

5.1.1 Planning agent belief

The belief in an agent is represented as a two dimensional occupancy grid. Each cell of the
occupancy grid symbolizes a concept of the environment i.e. free cell, obstacle cell, mine
cell and unknown cell. The agent applies its deliberation capability on this belief in order to
infer a goal, which it will later pursue.

5.1.2 Planning agent capabilities

The agent has the following set of capabilities, which enable it to explore a given unknown
environment:

1. Sense
2. Mapping
3. Localization
4. Information exchange with peer agents

The agent’s sensory mechanism is represented as footprint of eight adjacent cells to its
current position. Whenever an agent performs a sensory sweep it gains new information
about its environment.

Coordinating 
Agent 

Planner 
Agent1 

Planner 
Agent2 

Planner 
Agent3 

Sub map 

Agent1 
Sub map 

Agent1  
Sub map 

Peer Planner agent Sub map 

Fig. 2 Basic coordination
architecture
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The agent has mapping capability implying the agent updates its current belief i.e. the
occupancy grid by fusing information gained about new cells as a resultant of the sensory
sweep. In this manner the agent’s belief gets subsequently updated.

The agent is capable of localizing itself with respect to its current belief i.e. current
mapped territory. Localization implies the re-location of the agent to a new location in order
to explore unknown environment. The Localization function is an implementation of a
frontier based coverage technique. The Localization process involves the following sub
steps to deduce a goal location:

1. Retrieval of frontier cells
2. Calculation of cost to each frontier cell from current location
3. Declaration of least cost frontier cell as goal cell

1. Frontier cells are identified by scanning all visited free cells, a visited free cell is
declared a frontier cell if it is adjacent to at least one unknown cell in the horizontal or
vertical direction.

2. The cost of each frontier cell is calculated using an A*(A-star) based path planner.
The path planner is configured with Manhattan distance as well as the Euclidean distance as
the heuristic function. The Euclidean distance is the straight line distance also called the
crow-fly distance as shown in Eq. 1.

h nð Þ ¼ sqrt abs n:x� goal:xð Þ2 þ abs n:y� goal:yð Þ2
� �

ð1Þ

The Manhattan distance is total number of cells moved horizontally and vertically to
reach the target cell from the current cell, ignoring diagonal movement, and ignoring any
obstacles as shown in Eq. 2.

h nð Þ ¼ abs n:x� goal:xð Þ þ abs n:y� goal:yð Þð Þ ð2Þ
The Frontier cell with the least cost is declared as the next goal state for the agent. The

experiments showed that Manhattan distance performs better in grid environment as
compared to Euclidean distance.

5.2 Coordination via coordinating agent

The planning agents coordinate with each other via the coordinating agent as shown in Fig. 2.
Each planning agent after a sensory operation submits its sub map i.e. map generated as a
result of a sensory sweep to the coordinating agent. The coordinating agent broadcasts this
map to other planning agents, which on receiving this local map update their individual maps.

Each planning agent is required to subscribe with the coordinating agent in order to
submit maps and receive maps from peer planning agents, in addition to that exploration is
also regulated through the coordinating agent, all agents subscribe to a exploration event in
order to simultaneously initiate exploration activity.

5.2.1 Exploration activity sequence with coordination

Following is the exploration activity sequence with Coordination:

1. Perform Sensory Sweep
2. Build Sub Map
3. Update Local Map with Sub Map
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4. Submit Sub map to Coordinating Agent
5. Receive Peer Sub maps from Coordinating Agent
6. Perform Frontier Analysis
7. Select Frontier and Travel
8. Repeat until no frontiers to travel

5.3 Broadcast manager

In addition to the planning agents and coordinating agent, a broadcast manager is required. A
given agent communicates with the coordinating agent using a broadcast manager. The
broadcast manager is an abstraction of an agents networking and communication capabilities.
The broadcast manager provide services to publish the presence of an agent, send agent sub
map to coordinating agent and receive sub maps of useful information from peer agents.

Using these services of the broadcast manager an agent is able to make other agents
aware of its presence via subscribing with the coordinating agent, to submit its sub map to
the coordinating agent and receive sub maps of peer agents.

6 Simulated ant agent system

Ants are tiny insects capable of finding shortest routes from their nest to the food source.
These ants heuristically find the shortest route and save time to get the food. Ant colony
optimization [4] is the technique inspired by these tiny ants for optimization problems like
traveling salesman problem, job scheduling, network routing, and classification. Ant colony
optimization has been applied to solve combinatorial complex problems.

This research presents a simulated ant agent system (SAAS) for solving route planning
problem both in static as well as in dynamic environments. SAAS has been applied for
online planning in dynamic environments with different environmental configurations and
constraints. Ant agents have been used in SAAS and they are capable of traversing the
environment based on ACO algorithm technique and collectively find the shortest route
from the initial state to the goal state by using indirect communication.

Ant agents are capable of generating probabilistic solutions using a roulette wheel
method. They have no prior knowledge of the environment and it traverses the environment
for goal state. Once the goal state is discovered, each ant agent constructs a single solution.
The solution is evaluated and its information is conveyed to other ant agents by using
stigmergy [3]. The stigmergy is a technique of indirect communication used by ant agents.
Ant agents update the solution path by updating pheromone level and it acts as a
communication for other ant agents. In the initial state space search, ant agents construct
bad solutions but as these ant agents reach the goal state, they update the pheromone levels
for the solution path. The next ant agent is guided by the indirect communication of this
route information and probability of selecting these routes by the ant agent increases. The
parameters like alpha and beta controls the convergence process. The alpha parameter is
related with pheromone level and beta is related with the heuristic value i.e. Manhattan
distance or Euclidean distance. The different ranges for these parameters have been tested
and used in the simulation. The pheromone level and heuristic function are two components
that guide the ant agents towards the goal state.

The SAAS has been applied for static route planning using modified ACO algorithm.
The goal state remains fixed and environment is static and unknown for ant agents. After
loading of map with specific environment, the map is prepared for SAAS. The pheromone
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is initialized randomly to a small value from 0.01 to 0.09. The start state and the goal state
are selected and SAAS starts execution. The ant agent starts exploring the environment
randomly and the selection of the next node takes place by using the probability of selection
formula given in (1). The formula consists of pheromone level as well as the heuristic
function for calculating probabilities for each prospective node. The heuristic function used
for static environments is the Manhattan distance [15]. The Manhattan distance is the
number of vertical and horizontal moves to reach the goal state. Before taking the step, each
ant agent calculates the probability for each adjacent node and selects the next node by
using roulette wheel. The ant agent continuously explores the static environment for goal
state. As soon as it finds the goal state, the pheromone at the resultant path is updated by
using the updating equation.

Finding the solution in dynamic environment is difficult when multiple constraints
are enforced. The SAAS has been applied for dynamic environment in the same way
as moving target search (MTS) [6, 7, 10]. The simulated ant agent is capable of locating
the moving target by using modified ACO. Again ant agent has been used for the
handling of moving targets. There are two options for incorporating the moving target. In
the first option, we select the number of times we want to change the target during each
run. While in the second option the ratio of change of moving target generates randomly.
After loading and preparation of the map, an option is selected for incorporating moving
target. During the execution of the task, goal changes and ant agent reconfigures the
planning phase for the new goal state. SAAS has been tested for different map sizes and
configurations.

7 Experimentation and results

This research is focused on the issues when agents are used for multiple inter related tasks
such as mapping, detection, avoidance and route planning. In the start of the research, the
focus was on exploration and then after implementing the mechanism for exploration, the
focused was changed to coordination. During this research, two exploration strategies have
been experimented and the results from frontier based exploration were more reasonable
and accurate as compare to GVG method.

Frontier based method look as the perimeter of the sensed region on an occupancy grid
and then rank areas to explore. While Voronoi methods represent the explored world as a
Voronoi diagram and use geometric properties to ensure that open areas are opportunis-
tically explored as the agent moves.

The resultant hybrid architecture was tested by using a grid simulation as shown in
Fig. 3 with planner agents and coordinating agent. In Fig. 4 multiple autonomous agents are
shown during exploration and obstacle avoidance. After the successful exploration of
mines, the next objective is to device a safe route for the movement of soldiers. The
provision for the start point and the destination point is also given in the simulation. The
resultant path will be a safe route after avoiding land mines and other obstacles as shown
with green color in Fig. 5. The simulation has been implemented in Microsoft.Net platform
using C# language. The experiments have been conducted on Intel Core 2 Duo processor
with 2 GB Ram with Windows 7 as the operating system.

7.1 Comparison of the heuristic for A* and learning real time A* algorithm

The heuristic can be used to control the behavior of A* algorithm.
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At one extreme, if h(n) is 0, then only g(n) plays a role, and A* turns into Dijkstra’s
algorithm, which is guaranteed to find a shortest path.

& If h(n) is always lower than (or equal to) the cost of moving from n to the goal, then A*
is guaranteed to find a shortest path. The lower h(n) is, the more node A* expands,
making it slower.

Fig. 3 Agent based mine sniffer screen shots

Fig. 4 Exploration with coordinating multi agents
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& If h(n) is exactly equal to the cost of moving from n to the goal, then A* will only
follow the best path and never expand anything else, making it very fast. Although you
can’t make this happen in all cases, you can make it exact in some special cases. It’s
nice to know that given perfect information, A* will behave perfectly.

& If h(n) is sometimes greater than the cost of moving from n to the goal, then A* is not
guaranteed to find a shortest path, but it can run faster.

& At the other extreme, if h(n) is very high relative to g(n), then only h(n) plays a role,
and A* turns into Breath First Search.

A* search is a widely known form of best-first search and it evaluated nodes by
combining g(n), the cost to reach the node, and h(n), the cost to get from the node to the
goal:

f ðnÞ ¼ gðnÞ þ hðnÞ
Since g (n) gives the path cost from the start node to node n, and h (n) is the estimated

cost of the cheapest path from n to the goal:

f (n) = estimated cost of the cheapest solution through n.

If we try to find the cheapest solution, a reasonable thing to try first is the node with the
lowest value of g (n)+h (n). It turns out that this strategy is more than just reasonable,
provided that the heuristic function h(n) satisfies certain conditions, A* search is both
complete and optimal. The optimality of A* search is straightforward to analyze if it is used
with tree-search. A* search is optimal if h (n) is an admissible heuristic i.e. provided that
h (n) never overestimates the cost to reach the goal. The admissible heuristics are by nature
optimistic, because they think the cost of solving the problem is less than it actually is.
Since g (n) is the exact cost to reach n, we have as immediate consequence that f (n) never
overestimates the true cost of a solution through n.

Fig. 5 Post exploration route planning
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Technically, the A* algorithm should be called simply A if the heuristic is an
underestimate of the actual cost. However, we will continue to call it A* because the
implementation is the same, so we have an interesting situation in that we can decide what
we want to get out of A*. At exactly the right point, we will get shortest paths really
quickly. If we are too low, then we’ll continue to get shortest paths, but it’ll slow down. If
we’re too high, then we give up shortest paths, but A* will run faster. This property of A*
can be very useful. For example, you may find that in some situations, you would rather
have a “good” path than a “perfect” path. To shift the balance between g(n) and h(n), you
can modify either one. A* computes f(n)=g(n)+h(n). To add two values, those two values
need to be at the same scale. If g(n) is measured in hours and h(n) is measured in meters,
then A* is going to consider g or h too much or too little, and you either won’t get as good
paths or you A* will run slower than it could. The heuristics for grid maps can be
Manhattan distance, Diagonal distance, or a Euclidean distance. This research tested
Manhattan as well as Euclidean distance as a heuristic.

In the experiments, three different maps were used with different number of mines and
obstacles. The results showed that the performance of LRTA* is better as compared to A*
as far as time is concerned. LRTA* uses less time to detect the mine and for searching
operation as shown in the figures below. In Fig. 6 map1 was used with 45 mines and 82
obstacles. The detection time with LRTA* was better and efficient.

In Fig. 7 map2 was used with 50 mines and 110 obstacles and again LRTA* showed better
results in terms of time and efficiency. Similarly, map3was usedwith 40mines and 134 obstacles
and similar results were obtained as shown in Fig. 8. Learning Real Time A* algorithm is more
robust, efficient and scalable as compared to Frontier-Based exploration using A*.

In Fig. 9, we see that A* explores the whole map, while traveling a constant distance, while
the LRTA* explores the samemapwhile traveling variable distances. This is because the former
uses no intelligent information about the presence of mines, and scans the whole map in a linear
fashion. On the other hand, the latter technique, while using a probabilistic approach in mine
detection, traverses the area to and fro, and at times moves over the same place more than once.
This is the reason why LRTA* travels more distance even in a constant map. But this does not
mean that LRTA* does not outperforms A* Exploration. The graphs for A* shows only two
points because it traverses the map in linear fashion and gives constant distance.

If we look at the same problem with a different angle, we come to find out the advantage of
using LRTA* over A* Exploration Technique. The Fig. 10 shows us that keeping the area and
the total number of mines constant, if we run both the algorithms on the same map, we see that
LRTA* performs better than A*, because it is better able to predict where mine clusters would

Comparison of Frontier-Based A* with 
LRTA* 

Frontier-Based 
using A* Search 

Learning Real Time 
A* Search 

Map1 
Time Distance Time Distance 
1:31 437  1:20  606 
1:34 439 1:22 668 
1:35 438  1:18 610 
1:33 439 1:22 645 
1:33 438  1:20  588 

Fig. 6 Comparison of frontier-
based A* with LRTA* for map 1
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be and would finish up finding the mines quicker than the naïve A* exploration algorithm. The
distance in A* algorithm again remains constant for all the runs and only two points are taken
on the graph, but consumes more time as compared to LRTA* algorithm shown in Fig. 10.

The experimentation has been divided into two phases, i.e. static and dynamic
environment. For static environment, goal state remains static. We use four different size
environments, i.e. 20×20, 40×40, 60×60, and 80×80 grid maps as shown in Fig. 11. Each
grid map has different percentage of obstacles and mines. The starting and the ending
points have been fixed for experiments. The number of ants is also fixed for each
experiment. After loading of the map, we need to set the parameters for experiment. There
is an option for enabling dynamic environment by randomly changing the goal during
online planning phase. We provide the number of such changing states for each run of the
simulation and goal changes randomly during planning. After loading the map, we need to
enter number of iterations, number of ants, and randomly changing goals for incorporating
dynamism in experimentation. The first experiment deals with static environment and we
use 50 iterations, 1 ant and 30 experimental runs. The results are shown in Tables 1, 2, 3
and 4. Four different maps have been used and each with different obstacle ratio and grid
size. A high obstacle ratio and randomly generated maps have been used to simulate
complex environments. The main parameters for the simulation are alpha and beta value
that primarily controls the convergence of the optimum solution. The alpha value represents
the contribution of the pheromone level and beta value represents the contribution of
heuristic function.

Comparison of Frontier-Based A* with 

LRTA* 

Frontier-Based 

using A* Search 

Learning Real Time 

A* Search 

Map2 

Time Distance Time Distance 

1:36 485  1:10 615 

1:36 504 1:20 645 

1:37 504  1:22  618 

1:42 487 1:21  625 

1:36 486  1:23  686 

Fig. 7 Comparison of
frontier-based A* with LRTA*
for map 2

Comparison of Frontier-Based A* with 
LRTA* 

Frontier-Based 
using A* Search 

Learning Real Time 
A* Search 

Map3 
Time Distance Time Distance 
1:35 491  1:09  598 
1:33 484 1:19 593 
1:35 491  1:20  605 
1:35 492 1:23 599 
1:34 510  1:21  585 

Fig. 8 Comparison of
frontier-based A* with LRTA*
for map 3

Multimed Tools Appl



The Table 1 represents a 20×20 map with static environment configurations. We keep the
value of alpha constant and vary the value of beta for 50 iterations and 30 runs for the
experiment. The convergence of the optimum solution has been noted. As alpha value represents
the contribution of the pheromone and beta value represents the contribution of the heuristic
function. The best values are obtained by increasing the contribution of the heuristic function.
Similarly, for other maps of 40×40, 60×60 and 80×80, the best values are obtained by
increasing the value of beta. The contribution of the heuristic function clearly helps the algorithm
to converge to an optimum solution and gives the minimum cell count. Four values have been
noted for each run i.e. minimum value, median value, average value, and maximum value. The
minimum and average values are the better scale for the comparison and proved that the
contribution of the heuristic function plays an important role in finding the optimum solution.
The values of alpha and beta are varied from 0.1 to 1.0 for better evaluation and comparison.

The SAAS has been tested by using Euclidean distance and results have been compared
with the results from Manhattan distance. We use different values for alpha and beta for
each of the maps. The values for alpha and beta have been varied from 0.1 to 1.0 for each
experiment and results have been recorded for comparison. There is a module for
optimization of the path by repairing the v-edges of the path. After the generation of the
path, the optimization module measure the distance of the generated route and compare the
distance after repairing the path. If the distance remains same as of the generated path, then
system regenerates the new optimized path.

Fig. 9 A* and LRTA*, distance
vs. mines

Fig. 10 A* and LRTA*, time vs.
mines
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(1) 20x20 (3) 60x60

(2) 40x40 (4) 80x80
Fig. 11 Grid maps of different sizes, obstacle ratio, and complexity

Table 1 Map 20×20 results with different values for alpha and beta using 50 iterations and 30 runs for each
experiment

Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

0.1 31.33 30.77 29.90 30.23 29.23 30.03 28.17 28.30 28.00 27.53

0.2 31.60 31.07 30.87 30.43 30.13 29.70 28.90 28.40 27.97 27.50

0.3 31.73 32.17 29.43 30.73 29.67 31.07 29.47 30.43 29.53 29.83

0.4 34.23 32.77 32.33 31.23 32.33 32.53 29.87 30.67 30.30 30.13

0.5 32.67 36.10 33.13 32.03 34.13 31.97 32.53 31.37 32.10 31.40

0.6 35.77 36.10 36.70 34.40 33.57 34.00 34.93 33.23 32.73 32.53

0.7 36.73 37.07 33.70 35.50 36.43 35.33 34.27 34.20 34.60 31.90

0.8 38.73 36.50 36.83 37.80 36.70 34.57 35.43 33.67 34.67 36.47

0.9 39.10 38.97 38.40 39.17 35.53 37.17 35.23 34.80 35.00 34.80

1 40.10 38.47 36.93 40.50 36.53 37.50 37.43 36.90 36.10 36.90

Min 31.33 30.77 29.43 30.23 29.23 29.70 28.17 28.30 27.97 27.50

Median 35.00 36.10 33.42 33.22 33.85 33.27 33.40 32.30 32.42 31.65

Average 35.20 35.00 33.82 34.20 33.43 33.39 32.62 32.20 32.10 31.90

Max 40.10 38.97 38.40 40.50 36.70 37.50 37.43 36.90 36.10 36.90
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Table 2 Map 40×40 results with different values for alpha and beta using 50 iterations and 30 runs for each
experiment

Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

0.1 60.37 58.38 60.20 56.80 55.73 56.70 55.43 56.03 57.23 54.57

0.2 65.27 62.87 63.57 64.29 63.78 62.57 64.23 62.67 61.90 61.83

0.3 73.67 69.13 70.27 67.20 73.53 68.00 63.67 67.70 64.13 63.37

0.4 75.50 70.80 73.47 74.80 70.50 71.83 70.84 74.17 69.37 70.33

0.5 79.93 74.10 73.27 75.83 69.54 73.22 71.60 74.72 72.39 71.66

0.6 84.37 83.60 79.36 81.42 78.34 75.63 76.82 75.23 73.40 74.33

0.7 80.43 82.45 78.49 75.24 77.49 73.67 75.03 73.67 76.28 74.35

0.8 80.13 84.56 79.30 81.68 75.39 78.27 75.35 76.39 72.78 73.56

0.9 92.97 93.44 86.40 88.32 84.90 87.31 83.22 85.78 82.92 80.31

1 96.37 96.88 94.54 93.76 94.03 88.32 87.21 85.72 84.29 84.56

Min 60.37 58.37 60.20 56.80 55.73 56.70 55.43 56.03 57.23 54.57

Median 80.03 78.28 75.98 75.54 74.46 73.45 73.32 74.45 72.59 72.61

Average 78.90 77.62 75.89 75.93 74.32 73.55 72.34 73.21 71.47 70.89

Max 96.37 96.88 94.54 93.76 94.03 88.32 87.21 85.78 84.29 84.56

Table 3 Map 60×60 results with different values for alpha and beta using 50 iterations and 30 runs for each
experiment

Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

0.1 275.50 272.17 270.63 276.93 254.17 247.50 240.40 207.43 194.67 196.93

0.2 286.45 292.49 274.56 271.50 264.89 266.35 258.64 235.45 210.58 226.46

0.3 289.56 282.60 246.31 281.43 274.54 267.42 264.88 225.54 233.50 215.63

0.4 284.53 294.50 274.68 271.40 265.66 273.53 258.72 235.50 188.62 187.36

0.5 262.50 276.57 271.89 265.43 257.89 244.65 239.65 264.77 231.44 216.45

0.6 283.67 275.54 271.69 254.60 255.33 271.30 235.50 243.61 185.62 192.50

0.7 296.67 293.65 277.49 271.33 266.40 246.76 275.42 247.68 231.54 223.43

0.8 276.50 272.54 284.22 256.43 254.51 261.60 253.87 262.26 266.49 224.48

0.9 354.65 287.56 293.65 277.54 271.64 254.50 243.42 216.68 225.53 218.49

1 342.43 273.52 284.99 267.72 289.56 264.66 241.55 224.58 223.47 205.65

Min 262.50 272.17 246.31 254.60 254.17 244.65 235.50 207.43 185.62 187.36

Median 285.49 279.59 274.62 271.37 265.28 263.13 248.65 235.48 224.50 216.04

Average 295.25 282.11 275.01 269.43 265.46 259.83 251.21 236.35 219.15 210.74

Max 354.65 294.50 293.65 281.43 289.56 273.53 275.42 264.77 266.49 226.45
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The simulated ant agent system is able to track the moving target similar to the online
planning and takes care of the dynamic environment. During each run, the goal changes
randomly and it behaves like a moving target search. Whenever the goal changes the SAAS
is capable of tracking it and again finds the shortest route to the new goal. The experimental
setup provides two options for changing the goal. The option 1 takes a number to change
the goal during the run randomly. While option 2 changes the goal according to a certain
percentage of change. The experiments have been performed by changing the goal 3 times
and by using the option 1 first. The number of generated paths automatically generated in a
drop down menu list. If the user selects to change the goal 4 times, it will have 4 paths and
we can draw and optimize any of the 4 available paths. The figures below show different
map considerations used in the experiments.

The experiments have been conducted separately for static goal and for dynamic goal
environment. The starting point and the goal point remains constant throughout each run. Each
run consists of 50 iterations with single ant. The maps have been generated randomly with
different obstacle ratios and placement of mines. The environments are from simple to complex.
The SAAS has been used to find the optimum route between the starting point and the goal point.

Table 4 Map 80×80 results with different values for alpha and beta using 50 iterations and 30 runs for each
experiment

Beta

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Alpha

0.1 784.78 793.44 770.54 673.80 634.58 567.45 523.46 454.34 468.67 424.56

0.2 791.56 775.54 792.73 684.50 671.42 584.90 573.55 476.32 471.24 445.52

0.3 824.43 785.45 789.91 754.34 678.23 673.55 592.45 510.56 492.25 451.55

0.4 854.66 845.50 823.75 776.44 754.67 653.79 588.34 597.49 556.38 531.34

0.5 899.45 863.60 834.62 816.69 785.57 680.56 618.72 566.90 598.33 578.22

0.6 923.66 860.64 845.32 743.38 668.23 677.33 599.45 589.92 566.34 468.35

0.7 945.50 913.45 865.53 823.39 780.50 734.44 623.33 646.66 543.22 528.60

0.8 993.56 956.62 895.65 878.71 762.56 743.59 778.83 683.55 668.45 642.22

0.9 985.54 938.55 917.45 889.90 836.88 734.67 723.54 688.45 690.23 641.14

1 989.54 945.32 964.34 966.76 983.78 873.88 776.33 665.54 680.42 651.54

Min 784.78 775.54 770.54 673.80 634.58 567.71 523.45 454.34 468.67 424.56

Median 911.56 862.12 839.97 796.57 758.62 678.95 609.09 593.71 561.36 529.97

Average 899.27 867.81 849.98 800.79 755.64 692.44 639.80 587.97 573.55 536.31

Max 993.56 956.62 964.34 966.76 983.78 873.88 778.83 688.45 690.23 651.54

Table 5 Comparison of SAAS with LRTA* for an average of 30 runs

Map size Alpha Beta SAAS LRTA*

20×20 0.2 1 27.52 26.25

40×40 0.1 1 54.57 66.78

60×60 0.6 0.9 185.62 212.32

80×80 0.1 1 424.56 523.35
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Table 6 Comparison of SAAS with GA and PSO based optimization techniques

Map size Alpha Beta SAAS LRTA* GA PSO

20×20 0.2 1 27.52 26.25 28.57 27.35

40×40 0.1 1 54.57 66.78 62.68 58.84

60×60 0.6 0.9 185.62 212.32 341.29 193.50

80×80 0.1 1 424.56 523.35 672.45 492.62

Table 7 Comparison of simulated ant agent system for moving target search with LRTA* algorithm

Map = 20×20 Moving target search using simulated ant agent system (alpha = 0.1 & beta = 0.9)

Iterations = 200

Case 1 2 3 4 5 6 7 8 9 10

Initial State (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0) (0,0)

Goal 1 (3,11) (0,18) (1,15) (1,14) (0,18) (3,11) (2,15) (6,18) (7,16) (6,19)

Manhattan Distance 14 18 16 15 18 14 17 24 23 25

Cells traversed-SAAS 11 18 15 14 18 11 15 18 16 19

Cells traversed-LRTA* 11 18 15 14 18 11 15 18 16 19

No. of iterations 40 40 40 40 40 40 40 40 40 40

Goal 2 random (2,10) (3,16) (2,17) (4,13) (1,17) (2,10) (4,13) (5,16) (5,18) (3,16)

Distance from Start 12 19 19 17 18 12 17 21 23 19

Distance from Goal 1 2 5 3 4 2 2 4 3 4 6

Cells traversed-SAAS 10 16 17 13 17 10 13 17 18 16

Cells traversed-LRTA* 10 16 17 13 17 10 13 17 18 16

No. of iterations 40 40 40 40 40 40 40 40 40 40

Goal 3 random (1,7) (1,14) (4,15) (2,10) (2,18) (1,7) (3,11) (8,13) (8,16) (1,14)

Distance from Start 8 15 19 12 20 8 14 21 24 15

Distance from Goal 2 4 4 4 5 2 4 3 6 5 4

Cells traversed-SAAS 7 14 20 10 18 7 11 13 16 14

Cells traversed-LRTA* 7 14 16 10 16 7 11 13 16 14

No. of iterations 40 40 40 40 40 40 40 40 40 40

Goal 4 random (3,4) (3,11) (1,12) (1,9) (4,17) (3,4) (2,9) (5,11) (7,18) (3,12)

Distance from Start 7 14 13 10 21 7 11 16 25 15

Distance from Goal 3 5 5 6 2 3 5 3 5 3 4

Cells traversed-SAAS 4 11 12 9 18 4 9 11 19 12

Cells traversed-LRTA* 4 11 12 9 17 4 9 11 19 12

No. of iterations 40 40 40 40 40 40 40 40 40 40

Goal 5 random (6,1) (6,8) (2,9) (2,7) (5,15) (6,1) (1,8) (3,9) (6,15) (6,11)

Distance from Start 7 14 11 9 20 7 9 12 21 17

Distance from Goal 4 6 6 4 3 3 6 2 4 4 4

Cells traversed-SAAS 6 10 9 7 17 6 8 9 15 11

Cells traversed-LRTA* 6 10 9 7 17 6 8 9 15 11

No. of iterations 40 40 40 40 40 40 40 40 40 40
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The probability of selection for next node depends on the values of alpha and beta. The
alpha value represents the contribution of pheromone level and the value of beta represents
the contribution of heuristic function. The higher the value of beta, the more is the influence
of the distance in the selection of the next node. The figure below shows the effect of
changing the values for alpha and beta on the convergence of SAAS. The paths converge to
the optimum values with increasing beta value. The experiments have been conducted for
20×20, 40×40, 60×60, and 80×80 map sizes and the obtained results are consistent in all
the maps. The performance of SAAS remains consistent with the increase in map size. The
performance of SAAS is better as compares to LRTA* for complex environments as shown
in Table 5. The SAAS has also been compared with genetic algorithm (GA) and PSO based
optimization techniques and showed better results as shown in Table 6. For 20×20 map,
LRTA* performed better but as the environment size and complexity increases, SAAS out
performs LRTA* and showed better results. The SAAS and LRTA* are further tested for
moving target search and showed comparable results as shown in Table 7.

8 Conclusion

This paper presents an extension of hybrid architecture for route planning and optimization
using multi agent system. The architecture is tested by using frontier based exploration, A*
based exploration and LRTA* algorithm. As a result, the agent is able to construct its own
map and explore with respect to it, consequently explores the entire area. After the
successful implementation of the coordination mechanism using multi agents, research
covers post exploration route planning, which will enable the agent to generate safe route
plans for the given target destinations. This research will conclude by providing a statistical
comparison of results i.e. exploration time for different environment configurations i.e.
varying maps and number of agents. The frontier based exploration technique used is not
the optimum technique for exploration and leaves room for further improvement. So
Learning Real Time A* technique was also used and compared with the frontier based and
found to be more efficient and robust for multi agent based mine detection problems. The
simulated ant agent system is presented as a route optimization technique based on swarm
intelligence. The routes generated by simulated ant agent system are compared with LRTA*
and found to be efficient and optimized.
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