INTECH

open science | open minds

ARTICLE

International Journal of Advanced Robotic Systems

Opposition-Based Discrete PSO
Using Natural Encoding for Classification

Rule Discovery

Regular Paper

Naveed Kazim Khan'", Abdul Rauf Baig' and Muhammad Amjad Igbal’

1 Department of Computer Science, FAST National University of Computer and Emerging Sciences, Islamabad, Pakistan

* Corresponding author E-mail: naveed.kazim@nu.edu.pk

Received 18 Jun 2012; Accepted 17 Sep 2012

DOI: 10.5772/51728

© 2012 Khan et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract In this paper we present a new Discrete Particle
Swarm Optimization approach to induce rules from
discrete data. The proposed algorithm, called Opposition-
based Natural Discrete PSO (ONDPSO), initializes its
population by taking into account the discrete nature of the
data. Particles are encoded using a Natural Encoding
scheme. Each member of the population updates its
position iteratively on the basis of a newly designed
position update rule. Opposition-based learning is
implemented in the optimization process. The encoding
scheme and position update rule used by the algorithm
allows individual terms corresponding to different
attributes within the rule’s antecedent to be a disjunction of
the values of those attributes. The performance of the
proposed algorithm is evaluated against seven different
datasets using a tenfold testing scheme. The achieved
median accuracy is compared against various evolutionary
and non-evolutionary classification techniques. The
algorithm produces promising results by creating highly
accurate and precise rules for each dataset.

Keywords Particle Swarm Optimization (PSO), Discrete
PSO, swarm intelligence, classification, OBL, rule list,
sequential covering algorithm

www.intechopen.com

1. Introduction

Classification is considered one of the most critical tasks of
decision-making in a variety of application domains, such
as the human sciences, the medical sciences and
engineering, etc. Classification schemes have been
developed successfully for several applications, such as
medical diagnosis, credit scoring and speech recognition,
etc. In classification problems, sets of if-then rules for
learned hypotheses is considered to be one of the most
expressive and comprehensive representations. In many
cases, it is useful to learn the target function represented as
a set of if-then rules that jointly define the function. There
are usually three types of approaches for rule generation
using an evolutionary algorithm. In the first approach, an
EA evolves a population of rules or a rule baseis evolved
by EA such that the whole of the final population or a
subset of it is considered to be the end result [1-6]. The
second approach is iterative, running an EA multiple times
in succession whereby the result of each run is considered
to be a partial solution to the problem [7, 8]. A third
approach is to create an ensemble of classifiers by
combining several different solutions obtained by using
either of the previous two approaches [9-11].

Int J Adv Robotic Sy, 2012, Vol. 9, 191:2012

When considering a rule induction algorithm and
focusing on the encoding or representation of rules, there
are two main approaches that have been applied by
researchers: the Michigan approach and the Pittsburgh
approach. If a Michigan-style encoding is applied then, in
general, either a rule precondition or a complete rule is
evolved by the EA. In the first case, a separate procedure
is used to decide the rule postcondition before the rule
evaluation, e.g., [1]. Alternatively, the class may already
be specified for each rule precondition during the entire
run of the algorithm. The EA is run repeatedly with each
run focusing on evolving rule preconditions for a specific
class, e.g., [12, 13]. If a complete rule is encoded in an
individual, then the rule postcondition may also be
subject to evolution and change by the genetic operators
[2]. In the Pittsburgh approach, rule preconditions are
generally encoded along with their postconditions [14].

In this paper, we propose a new Discrete Particle Swarm
Optimization technique for discovering classification
rules from the given dataset. The salient features of our
work are as follows:

e We have proposed a new position update rule
for the particles with the help of which they can
share their information efficiently in a discrete
domain.

e The proposed position update rule and encoding
scheme allows individual terms associated with
each attribute in the rule’s antecedent to be a
disjunction of the values of the attribute. For
example, in AM+ [60] and all earlier versions of
Ant Miner, the rule antecedent part is simply the
conjunction of values of the predicting
attributes. In contrast, our technique - ONDPSO
- allows a complete rule antecedent to be
conjunction of the disjunctions of the values of
predicting attributes.

e We have introduced a penalty constant in a
fitness function of the particles which results in
more precise and reliable rules.

e The proposed technique works both on binary
and multiclass datasets. Although it has been
designed for working with datasets containing
categorical or discrete attributes, it can also be
used in a continuous domain after discretizing
the continuous attributes.

This paper is organized as follows. Section 2 describes
related work on rule induction using Computational
Intelligence techniques. Section 3 provides a brief
introduction to classic PSO and its variant, Discrete PSO.
Section 4 describes in detail the proposed approach. Next,
in Section 5, the experimental setup is discussed and the
performance of the proposed algorithm is evaluated on
various datasets. Finally, Section 6 concludes with a
summary and some ideas for future work.

Int J Adv Robotic Sy, 2012, Vol. 9, 191:2012

2. Related Work

Decision trees are one of the most popular choices for rule
induction from a given set of training instances. They
adapt a divide-and-conquer approach where training
data is divided into disjoint subsets and the algorithm is
applied to each subset in a recursive manner. First of all, a
decision tree is learnt from the data and then it is
translated into an equivalent set of rules, one rule for each
path from the root to a leaf of the tree [15-17]. Decision
trees tend to suffer from overfitting in the presence of
noisy data. Usually some kind of tree-pruning technique
is used to get rid of overfitting. Decision trees have been
greatly praised for their comprehensibility.

Decision lists are similar to decision trees in that they
symbolize an explicit representation of the knowledge
extracted from the training data. However, they follow a
'separate-and-conquer' approach, where one rule is
generated that covers only a subset of the training set and
then more rules are built to cover the remaining instances
in a recursive manner. This strategy was applied in [18-
20].

Another method applied by researchers for extracting
rules from a given dataset is offered by genetic
algorithms (GAs). Here, rules are encoded as a bit string
and specialized genetic search operators, such as
crossover and mutation, are used to explore the
hypothesis space, e.g., [4, 21-22]. In [23], a distributed GA-
based system, REGAL, has been proposed. It is used to
learn first-order logic concept descriptions from training
instances. The initial population in REGAL consists of a
redundant set of incomplete concept descriptions and
each undergoes the evolutionary process separately. G-
Net [24] is a robust GA-based classifier that consistently
exhibits better performance. Coevolution has been used
as a high-level control strategy. G-Net is relatively
suitable for parallel implementation on a network of
workstations.

Using ant colony optimization (ACO) for rule induction
provides an efficient mechanism to accomplish a more
global search in a hypothesis space. In [25], an ant
algorithm called Ant-Miner was proposed for creating
crisp rules for describing the underlying dataset. Ant-
Miner considers nodes of a problem graph as the terms
that may form a rule precondition. Ant-Miner does not
require the ant to visit each and every node. In contrast,
[26] takes the rule induction problem as an assignment
task where a fixed number of nodes are present in the
rule precondition - an ant explores the problem graph by
visiting each and every node in turn.

In many classification tasks where Fuzzy systems have

been applied successfully, rules are mostly derived from
human expert knowledge. However, as the feature space

www.intechopen.com

increases, this type of manual approach becomes
unfeasible. With this requirement in mind, several
methods have been proposed to generate fuzzy rules
from numeric data explicitly [27, 28]. The most
straightforward fuzzy rule induction methods may be
considered as extensions to conventional methods where
fuzzy rather than crisp attributes are used. For example,
ID3 - a decision tree method - has been extended to
produce fuzzy ID3 in the work of [29, 30]. The fuzzy
logic-based approach has the major advantage of being
able to represent inexact data in a way that is more
naturally understood by humans.

Neural networks [31-35] and GAs [36-39] have been used
by several researchers in combination with fuzzy logic for
rule generation.

In [40], genetic programming (GP) using a hybrid
Michigan-Pittsburgh-style encoding has been applied to
extract rules in an iterative learning fashion. A GP
classifier has been proposed in [41], using an artificial
immune system-like memory vector to generate multiple
comprehensible classification rules. It introduces a
concept mapping technique to evaluate the quality of the
rules.

Gene Expression Programming (GEP) is a new approach
for extracting classification rules by employing genetic
programming with linear representation [42]. The
antecedent part of the extracted rules may involve many
different combinations of the predictor attributes. The
search process is guided by a fitness function for the rule
quality which takes into account both the completeness
and rule consistency. GEP extracts high-order rules for
classification problems and a minimum description-
length principle is used to avoid overfitting.

In [43], a boosting algorithm has been proposed for
learning fuzzy classification rules. An evolution strategy
(ES) is iteratively invoked and at each iteration it induces
a fuzzy rule that gives the best classification over the
current set of training instances. Thus, a rule base is
generated in an incremental fashion. The weight of
correctly classified training samples is reduced by the
boosting mechanism.

The extended classifier system (XCS) represents a major
development in learning classifier systems research. XCS
[44, 45] has the tendency to evolve classifiers that are as
general as possible while still predicting accurately. XCS
acts as a reinforcement learning agent with a simplified
structure since it does not have an internal message list.
The fitness of the classifier is based on the accuracy of the
classifier’s payoff prediction. XCS uses a modification of
Q-learning.

www.intechopen.com

3. Overview of PSO and Discrete PSO

Particle swarm optimization (PSO) is a population-based
evolutionary computation technique, originally designed
for continuous optimization problems. The searching
agents, called “particles”, are 'flown' in the n-dimensional
search space. updates its position
considering not only its own experience but also that of
other particles. The position and velocity of each particle
are updated according to the following equations [46]:

Each particle

X, ()= X,(t=1)+ V() 1)
Vy (f) = (wx V,(f - 1)) + (Clﬂ(t)(xfm - X’(t))) + (czrz(t)(be _Xx (t))) (2)

where Xi(t) is the position of particle Pi at time t and Vi(t)
is the velocity of particle Pi at time t; W is the inertia
weight, c1 and ¢ are the learning factors; r1 and r2 are
constants whose values are randomly chosen between 0
and 1; XV b is the i dimension of the personal best
position so far by the particle
consideration; and X;gb is the i dimension of the global
best position reached so far by the entire swarm. Each
particle is evaluated using a fitness function. The closer
the position of the particle to the optimal position, the
fitter the particle is. The optimization process is iterative.

reached under

The PSO algorithm was originally proposed for
continuous problems. Kennedy and Eberhart developed
the first discrete PSO to operate on binary search spaces
[47]. They used the standard velocity update equation but
changed the standard position update equation. They
considered the new position component to be 1 with a
probability acquired by applying a sigmoid function to
the corresponding velocity component. This binary PSO
is a more specialized version of the general discrete PSO.
To obtain a general discrete PSO, the simplest and easiest
way is to use standard continuous PSO with the same
conventional velocity and position update equation while
rounding the elements of the position vectors to the
nearest valid discrete value. This approach assumes that
elements in the position vector do not take on those
values which are outside the extremes of the search space
[48, 49]. Another approach is to discretize the continuous
space by making intervals and to assign each interval to
one of the discrete values [50, 51]. A more sophisticated
approach is to redefine the standard arithmetic operators
used in position and velocity equations so that they are
more suitable for applying to discrete space. For example,
in [52], PSO was adapted to be applicable to the
constraint satisfaction problem (CSP) by overloading the
arithmetic operators used in position and velocity update
equations. As such, and in this case, particles represent
positions with dimensions that are independent of one
another, whereby the changed position and velocity
equations are:

Naveed Kazim Khan, Abdul Rauf Baig and Muhammad Amjad Igbal:

Opposition-Based Discrete PSO Using Natural Encoding for Classification Rule Discovery

4

X,()=X,(t-)®V,(t) ®)
V(1) = (w ® V,(t = 1)) o (e, (N(XIOX, (1)) o (cyry (N(XE'OX, (1)) (4)
where ®, o, © and @ are redefined arithmetic
operators. Moreover, in [52], a mutation operator was
also used which changes each element of the velocity
vector based on a certain probability. Similarly, in [53],
arithmetic operators were redefined to develop a discrete
PSO to solve the travelling salesman problem (TSP).
Here, particles represent permutations.

H. R. Tizhoosh first proposed the idea of opposition-
based learning (OBL). Suppose we have a real number n
within an interval of [a, b], then its opposite number
called n’ can be calculated as:

n=a+b-n (5)

In order to extend the case to higher dimensions, suppose
we have a point N = (nl,nz,...,nm) in an m-dimensional
space where n1, n,...,nm are real numbers and, for each
dimension 7 of N, ni lies in an interval [ai, bi]. The opposite
point N'= (n’l,n'2,...,n;n) is defined by its components:

n; =a; +b; —n, (6)

Thus, when implementing opposition-based optimization
rather than just evaluating the individuals in an actual
population, we compute the opposite individuals as well.
If the fitness of an individual is less than the fitness of the
corresponding opposite individual, we replace the
with its counterpart OBL has
implemented successfully in evolutionary algorithms
such as DE and PSO to solve different optimization
problems.

individual been

4. Proposed Method

Suppose that the total number of examples to be
classified is N, each of which has M attributes (excluding
the class attribute), and that we have a fixed swarm size
of P particles. In our proposed algorithm, each particle
represents the precondition of an individual rule.

4.1 Particle Encoding and Calculating Opposite Points

The particles have been encoded using Natural Encoding.
The position vector of each particle is a string of M
natural numbers. In the binary encoding, if mi is the
number of possible values for the i attribute, exactly mi
bits are used to encode a value for that attribute. For
example, we have an attribute Rain which can take any of
the three values Heavy, Medium or Low. We use a bit
string of length 3 to encode this attribute. Each bit
position in the string corresponds to one of the three
values of the attribute Rain. Placing a 1 at a certain
position shows that the attribute is allowed to take on the

Int J Adv Robotic Sy, 2012, Vol. 9, 191:2012

associated value. For example, the string 010 means that
Rain takes the second of its three values or (Rain =
Medium). Likewise, string 011 means (Rain = Medium or
Low). The string 111 represents the most general case,
namely that we do not care which of its possible values
Rain takes on. Natural encoding for an attribute is
obtained by converting a binary number (obtained during
its binary encoding) into a natural number [54].

Eq. 6 is used to calculate the opposite point in a
continuous space. It cannot be used in a discrete domain.
To implement OBL in discrete domain as well, we have
used the following equation. More precisely, suppose that
Y = (pl,p2,..., pd) is a point in a d dimensional space, then
its opposite point Y’ :(pi,pé,...,p;l) can be calculated as
follows:

pi=2"-1)-p, 7)

where k is the number of unique values for the it
dimension.

We have explicitly avoided the most specific case
(represented by 0 in natural encoding) by not allowing
particles to have such Null values. Alternatively, we can
simply assign a very low fitness to the particles having
such Null values.

4.2 Swarm Initialization

Since swarms learn rules iteratively in a class by class
fashion, we have initialized the swarm with the examples
of the target class. If the number of examples in the target
class is less than the swarm size, the remaining particles
are initialized randomly.

4.3 Position Update

We have designed a new position update rule for
ONDPSO. The crossover operator used in HIDER* [54] for
discrete attributes has been used in our position update
rule for both discrete and continuous domains (continuous
features are discretized in the pre-processing step). More
precisely, the crossover operator works as follows: let 11 be
a natural number, then the natural mutation of the i bit of
n denoted by mutj(n) is calculated as:

mut; = (n+2/")%2/ +2/ V]J k=1,2,3,.,N (8)
2

where N is the number of values of the attribute.
The mutation set Mut(n) is the set of all valid mutations
for n. Let t > 0, then the crossover between two natural

numbers ni and nj is expressed as follows:

Cross(ni,nj) :{Zth [Vs>0,s< t,Qf #0,0Q° = @})

www.intechopen.com

where:

Q' =[Mut(n) | r\[Mut(nj)T
and:

t ; if =0
I:Mut(ni)] = u -1 (nuMut(n;)) otherwise
ne[Mut(ni)] !

In our proposed method, the position of each particle is
updated according to the following equation:

% (t . 1) . Cross(CmSS(XZPb'xi (t)),Cross(X,‘gb/X,- (t))) (10)

4.4 Quality Measure

In many papers - e.g., [55-57] - the following fitness
function or quality measure has been used to evaluate the
performance of a rule:

Quality = Sensitivity * Specificity

“Sensitivity” indicates, out of all positive examples, what
ratio of examples is actually classified as positive by the
rule, namely:

Sensitivity = %p . o

where tp is the total number of positive examples which
are classified as positive by the rule and fn is the total
number of positive examples which are not classified as
positive by the rule.

“Specificity” indicates, out of all negative examples, what
ratio of examples is actually avoided by the rule to be
classified as positive, that is:

Specificity =t (tn+ fi)

where tn is the total number of negative examples which
are not classified as positive by the rule and fp is the total
number of negative examples which are classified as
positive by the rule.

However, in [58], Nicholas and Alex have shown a
scenario where, instead of specificity, precision is more
important for assessing the quality of a rule. “Precision”
indicates, out of all examples classified as positive by the
rule, what ratio of examples is actually positive. It gives
us the confidence or reliability of the rule:

Precision = %P)

Accordingly, Nicholas and Alex replaced “Specificity”
with “Precision”. Since we want our iterative rule

www.intechopen.com

learning algorithm to be highly precise and since we are
ready to accept low coverage, we used a slightly modified
version of the quality measure proposed in [48].

The following fitness function or quality measure has
been used in our proposed algorithm:

Quality = P, i (11)
tp+fr (tp+(10° * i)

where k is a constant used to penalize in instances where
the classification is false positive; the greater the value of
k, the higher the penalty is. We require that any rule
learnt at any time should have a high accuracy, but not
necessarily high coverage. By “high accuracy”, we mean
that the rule should make correct predictions. By “low
coverage” we mean that the rule is not required to make
predictions for every training example.

4.5 Stopping Criteria

Since the algorithm learns incrementally - i.e., one rule at
a time - there are two different types of stopping criteria.
For the evolutionary process where the algorithm is used
to learn a single rule, the maximum number of
generations specified in advance can be used as stopping
criteria. Alternatively, the evolutionary process can be
stopped when there is no improvement in the global
fitness of the swarm. The second type of stopping criteria
is for the overall rule learning scheme. The algorithm
continues to extract the best rules for the target class until
there are no more examples of the target class in the
dataset. This process is repeated for every class.

4.6 Rule Extraction over the Training Data

The proposed algorithm is a class-dependent sequential
covering algorithm. For each target class, the algorithm is
run to the output of the best rule that describes the
examples of that class until either the maximum number
of generations has been reached or else there is no
improvement in the global fitness of the swarm for a
certain number of generations. If the rule performance is
above a certain threshold, it is added to the final rule list.
Otherwise, the threshold is decreased linearly. For each
target class, it continues to learn rules sequentially and
removes the covered examples of the class until there is
no more example of the target class. At this point, dataset
is set to the original dataset with all the training examples
and the algorithm proceeds to learn rules for another
target class.

Negative examples - i.e., those which belong to a class
other than the current target class - are also used in the
evolutionary process so that classification may be more
directed and precise, otherwise the algorithm may end up
by returning the single and most general rule for the
target class where the encoded string contains all 1's in it.

Naveed Kazim Khan, Abdul Rauf Baig and Muhammad Amjad Igbal:

Opposition-Based Discrete PSO Using Natural Encoding for Classification Rule Discovery

6

Presented below is the pseudo-code describing the
proposed technique:

1. For each class, perform steps 2 and 3
reinitialize the training set

3. while some examples of the class are still uncovered,
perform steps 4 to 6

4. run our discrete PSO to generate the best rule using
the position update method described at the end of
section 4.3

5. if the best rule performance >= the threshold
a. add the best rule to the final rule set
b. remove the covered class examples, and
c. gotostep(3)

6. else decrease the threshold, go to step (4)

7. output the final rule set

4.7 Classifying Test Data

In applying the final rule list in the test phase, an
unseen example has been checked against all the rules
in the rule. If none of the rules match the example, it is
assigned the default class, which is the majority class
in the dataset. If more than one rule matches the
example but all the rules predict the same class, then
this class will be assigned to the example. If the
matching rules are in conflict with each other in
predicting the class, then we have adopted the conflict
resolution strategy described in [59]. The pseudo-code
for this strategy is as under:

For each class c in the dataset, initialize count(c) to zero.
For each conflicting rule r
For each class ¢
Add to count(c) the number of training cases with class c
covered by rule r
End for
End for

The unsigned example will be assigned to the class c,
which has the highest count(c) among all the classes.

5. Experiments and Results
5.1 Datasets & Experimental Setup

Seven datasets have been used in our experiments. The
datasets have been downloaded from the online UCI
Machine Learning Repository [61]. The information
about these datasets has been summarized in Table 1.
We have used a population size of 40 in all the
experiments unless stated otherwise. The threshold is
initially set to 0.25. The algorithm is given a chance to
find the rule whose quality is greater than or equal to
the threshold. If it fails to do so, the threshold is

Int J Adv Robotic Sy, 2012, Vol. 9, 191:2012

decreased by multiplying it with a scaling factor. The
scaling factor is set to 0.7. During the phase of learning a
single rule, we have allowed the algorithm to run for a
maximum of 1,000 generations. The threshold for early
stopping is set to 5% - i.e., the algorithm continues to
extract rules for the target class until 5% of the examples
of the target class remain uncovered. Continuous
attributes, when present in the dataset, have been
discretized in the pre-processing step using Weka's
supervised discretization method. In each experiment,
we have used a ten-folding testing scheme. We have
defined “error” to be the sum of the fp and fn. This
experimental set up is summarized in Table 2.

Dataset No. of No. of No. of
Continuous Discrete Classes
Attributes Attributes

Lenses 0 4 3

Z00 0 16 7

Mushroom 0 22 2

Pima Indian 8 0 2

Iris 4 0 3

Wine 13 0 3

Breast 9 0 2

Cancer (bcw)

Table 1. Datasets Used in Experiments

Population 40

Max No. of Iterations 1000

Performance Threshold 0.25

Scaling Factor for Threshold 0.7

Early stopping 5%

K 6

Testing Scheme 10-fold

Table 2. Experimental Setup
5.2 Results
5.2.1 Initialization

Usually, all the particles in the swarm are initialized
randomly. We have initialized the particles with
examples of the target class as well so as to observe the
effects on accuracy, T/R (the term to rule ratio), R (the
number of rules in the final rule list) and FE (fitness
evaluations). The showed that random
initialization exhibited relatively poor performance as

results

compared to the alternative initialization scheme. As
shown in figure 1, initialization with the target
examples exhibited greater accuracy than random
initialization on 3 out of 4 datasets. On the lenses
dataset, both initialization schemes resulted in the
same accuracy. Similarly, figure 2 and figure 3 show
that initialization with target examples achieved a
lower median value for T/R and R for the four datasets,
except for lenses where both schemes performed
equally well.

www.intechopen.com

1=}
15}

©
®

2000

96

94 1600

92
BOWithTarget 1200 OWithTarget

90

BRandom @Random

88

No. of FE(in 1000)

86

Percentage Median Accuracy

84 400

82

80

iris wine zoo lenses iris wine zoo lenses

Figure 1. Comparing Percentage Accuracy Figure 4. Comparing FE

5.2.2 Pruning

We have also experimented to observe the effects of
pruning and to see what difference it brings to the T/R, R
and accuracy statistics. Figure 5 shows the comparison of
the percentage median accuracy achieved by pruning and
without pruning the rules. It is very clear that pruning
always resulted in better percentage median accuracy in all
OWithTarget cases. The difference is significant for wine and zoo
@Random datasets where the pruning succeeded in achieving 100%
accuracy. By using pruning, we mainly hoped to achieve a
lower value for T/R. Figure 6 shows that the results are in
complete accordance with our viewpoint. Pruning the rules
resulted in a lower T/R for all the datasets. Again, the
results are more significant for the wine and zoo datasets
where the reduction of the T/R value is more than 66%.
irs wine zoo lenses These results also confirm the viewpoint that shorter or
more general rules result in better accuracy for a given
Figure 2. Comparing T/R dataset. Figure 7 shows the comparison between numbers
of rules in the final rule list. Figure 8 shows that in most of
the cases there was no effect on the number of FE.

25

TIR

0,5

100
98
96
94
92
90
88
86
84
82
80

iris wine Z00 lenses iris Z00

BWithTarget BPruning

BRandom

@No Pruning

No. Of Rules
Percentage Accuracy

Figure 3. Comparing No. of Rules Figure 5. Comparing Percentage Accuracy

www.intechopen.com Naveed Kazim Khan, Abdul Rauf Baig and Muhammad Amjad Igbal: 7
Opposition-Based Discrete PSO Using Natural Encoding for Classification Rule Discovery

3
2,5 A
2 4
BPruning
£ 15 -
= @No Pruning
1
0,5 -
0 B
iris Z00
Figure 6. Comparing T/R
10
g B
8
7
3
s 6 :
¥ BPruning
w 5
o BNo Pruning
o 4
4
3
2
1
0
iris Z00
Figure 7. Comparing No. of Rules
2000
g
S 1600 -
£ BPruning
w 1200 -
™ BNo Pruning
°
¢ 800 -
=z
400 A
0 4
iris wine zoo lenses

Figure 8. Comparing FE
5.2.3 Conflict Resolution

We have also experimented to see the effects of applying
a final rule list in different ways in the testing phase. In
one case, the final rule list is sorted according to the rule

Int J Adv Robotic Sy, 2012, Vol. 9, 191:2012

quality in descending order before the start of testing. A
class is assigned to the unseen example on the basis of
which rule first matches the example. As an alternative,
we did not sort the final rule list and an unseen example
was checked against all the rules in the rule list. In cases
where more than one rule matches the example, a conflict
resolution strategy has been used to resolve the conflict as
described in section 4.7. Figure 9 shows that better
percentage median accuracy has been achieved by
conflict resolution scheme when compared to the sorted
rule list scheme.

©
(&}

©
=

92

BConflictResolution
90

@Sorted List

88

86

Percentage Accuracy

84

82

80 -

iris wine z00 lenses

Figure 9. Comparing Percentage Accuracy

5.2.4 Performance of ONDPSO and its Comparison with
Other Techniques

We have compared the performance of our approach
over the seven datasets listed in table 1 with the results
reported in [54]. The experimental set up described in
Table 2 has been wused along with the pruning
mechanism. Moreover, the conflict resolution strategy
was used in the testing phase. The performance
statistics of ONDPSO in terms of average percentage
error, number of rules R, terms to rule ratio T/R and
number of fitness evaluations FE are reported in Table 3.

Datasets % Median | Median | Median
Median | R T/R FE
Error

Iris 3.30 9.00 1.60 1920000

Wine 0.00 6.50 2.50 33280

Lenses 0.00 4.00 2.50 16620

Z00 0.00 9.00 2.40 33460

Pima 33.76 30.00 342 6822200

Indian

Mushroom | 1.60 9.00 2.05 72280

Bow 2.86 11.00 4.02 130240

Table 3. Performance of ONDPSO over Different Datasets

Table 4 shows the results where, for the seven datasets,
the obtained percentage median accuracy achieved by
ONDPSO has been compared with the results reported
in [54]. As shown in Table 4, our proposed algorithm

www.intechopen.com

ONDPSO exhibited better performance in terms of error
rate when compared with other techniques. On the iris
dataset, ONDPSO performed better than the C4.5 and
C4.5 rules but stood equal to Hider and Hider*. In case
of the breast cancer dataset, ONDPSO achieved a
smaller error rate than all the other techniques but the
difference is especially larger in case of C4.5. ONDPSO

performed significantly well on the wine, lenses and zoo
datasets and left the other 4 techniques behind. More
importantly, it succeeded in achieving a 0% error rate in
the case of these three datasets. Pima Indian and
mushroom are the two datasets where ONDPSO
performed poorly when compared to the other
techniques.

ONDPSO Hider Hider* C4.5 C4.5 Rules
Datasets
ER NR ER NR ER | NR | ER NR ER NR
Iris 330 | 9.00 | 3.30 | 4.80 | 3.30 | 320 | 530 | 570 | 470 | 5.00
Wine 0.00 | 6,50 | 390 | 330 | 8.80 | 560 | 6.70 | 650 | 6.70 | 5.60
Multiclass
Lenses 0.00 | 4.00 | 25.00 | 6.50 | 25.00 | 4.50 | 30.00 | 5.20 | 16.70 | 4.10
Zoo 0.00 | 9.00 | 8.00 | 7.20 | 4.00 | 790 | 7.00 | 10.90 | 29.80 | 6.30
Pima

. 33.76 | 30.00 | 25.90 | 16.60 | 25.70 | 5.10 | 26.10 | 24.40 | 29.70 | 8.30

Indian

Binary Mushroom | 1.60 | 9.00 | 0.80 | 3.10 | 1.20 | 3.50 | 0.00 | 17.60 | 0.70 | 17.90

Bew 2.86 | 11.00 | 430 | 2.60 | 410 | 2.00 | 6.30 | 2290 | 490 | 9.60

Table 4. Comparison of the Error Rate (ER) and Number of Rules (NR)

100

N ®©® ©
o o o o

*Min
®Median
AMax

o

Percentage Error
B a ()
o

w
o

= N
o o

S
0%(‘
<&

Figure 10. Min, Median and Max. Error by ONDPSO

=
N Ao

Average Percentage Error,
N £ [} [e] o

o

ONDPSO

Hider* Hider C4.5 C4.5Rules

rror, N
o N £

Average Percentage E
o ©

IS

N

Hider* Hider C4.5 C4.5Rules ONDPSO

Figure 12. Average Percentage Error Over Binary Datasets

14

- -
»~ o e} o N

Average Percentage Error

N

ONDPSO

Hider Hider* C4.5 C4.5Rules

Figure 11. Average Percentage Error Over Multiclass Datasets

www.intechopen.com

Figure 13. Overall Average Percentage Error

Naveed Kazim Khan, Abdul Rauf Baig and Muhammad Amjad Igbal:

Opposition-Based Discrete PSO Using Natural Encoding for Classification Rule Discovery

9

Figure 10 clearly shows that, most of the time during the
testing phase, the algorithm stayed closer to its best
performance - i.e., a low error rate. Figure 11 and Figure
12 show the performance of ONDPSO and the other
techniques on

multiclass and binary datasets

respectively.

Overall, when the percentage error rate was averaged
over all the datasets, ONDPSO achieved the lowest error
rate of 6.04%. Hider and Hider* stayed very close to
each other. C4.5 produced the highest error rate at
13.31%. These results are shown in Figure 13.

However, as far as the number of rules or the size of
extracted rule list is concerned, ONDPSO produced a
comparatively longer rule list when compared with the
Hider, Hider* and C4.5 rules. The difference is
especially significant on the iris and breast cancer
datasets whereas on the remaining 3 datasets, ONDPSO
stayed very close to HIDER* and produced nearly
equally-sized rule lists. Only in comparison with C4.5
did ONDPSO extract shorter rule lists on average.

Having chosen the natural encoding for the particles,
our newly designed position update rule exhibited
better performance statistics when compared to the
results reported in [54, 60]. Together with the position
update rule, the chosen quality measure helped the
algorithm in extracting very precise rules, with each rule
having comparatively less coverage. As a result of this,
ONDPSO produced higher accuracy statistics and
longer rule lists for each dataset.

6. Conclusion

In this paper, we have proposed an algorithm for rule
extraction called ONDPSO. The aim of the proposed
technique is to discover classification rules in the
dataset. Though the algorithm has been designed for
working with datasets containing categorical or discrete
attributes, it can also be used in continuous domains
after discretizing the continuous attributes. It discovers
rules where individual terms in the rule’s antecedent are
allowed to be disjunctions of the possible values of
those attributes. We have compared the accuracy of
ONDPSO with various evolutionary and non-
evolutionary techniques over seven different public
domain datasets. As we have shown, ONDPSO
achieved 100% accuracy on the wine, zoo and lenses
datasets.

In the future, we would be interested in coming up with
some modifications that may result in relatively shorter
rule lists. We are also interested in finding new position
update rule for the particles.

10 IntJ Adv Robotic Sy, 2012, Vol. 9, 191:2012

7. References

[1] H. Ishibuchi, T. Nakashima and T. Murata.
Performance Evaluation of Fuzzy Classifier Systems
for ~ Multidimensional = Pattern Classification
Problems. IEEE Transactions on Systems, Man and
Cybernetics 29:601-618, 1999.

[2] Y.F. Yuan and H. Zhuang. A Genetic Algorithm for
Generating Fuzzy Classification Rules. Fuzzy Sets
and Systems 84:1-19, 1996.

[3] T. Slawinski, A. Krone, U. Hammel, D. Wiesmann and
P. Krause. A Hybrid Evolutionary Search Concept
for Data-Based Generation of Relevant Fuzzy Rules
in High Dimensional Spaces. Proceedings of the IEEE
International Conference on Fuzzy Systems (FUZZ
IEEE 1999) 3:1432-1437, 1999.

[4] K. A. de Jong, W. Spears M. and D.F. Gordon. Using
Genetic Algorithms for Concept Learning. Machine
Learning 13:161-188, 1993.

[5] C.Z. Janikow. A Knowledge-Intensive Genetic
Algorithm for Supervised Learning. Machine
Learning 13:189-228, 1993.

[6] H. Ishibuchi, T. Nakashima and T. Murata. Genetic-
Algorithm-Based Approaches to the Design of Fuzzy
Systems for Multi-Dimensional Pattern Classification
Problems. 229-234, 1996.

[7] J. C. Riquelme, J.S. Aguilar and M. Toro. Discovering
Hierarchical Decision Rules with Evolutive
Algorithms in Supervised Learning. International
Journal of Computers, Systems and Signals 1:73-84,
2000.

[8] J. J. Liu and J.T. Kwok. An Extended Genetic Rule
Induction Algorithm. Proceedings of the 2000
Congress on Evolutionary Computation (CEC-2000)
458-463, 2000.

[9] K. Sirlantzis, M.C. Fairhurst and R.M. Guest. An
Evolutionary Algorithm for Classifier —and
Combination Rule Selection in Multiple Classifier
Systems. Proceedings of the International Conference
on Pattern Recognition 2:771-774, 2002.

[10] W. B. Langdon and B.F. Buxton.
Programming for Combining Classifiers. Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO-2001)

[11] Y. Kim, W.N. Street and F. Menczer. Meta-
Evolutionary Ensembles. Proceedings of the IEEE
International Joint Conference on Neural Networks
(IJCNN 2002) 2791-2796, 2002.

[12] A. Gonzalez and R. Perez. Completeness and
Consistency Conditions for Learning Fuzzy Rules.
Fuzzy Sets and Systems 96:37-51, 1998.

[13] W. Romao, A.A. Freitas and R.C.S. Pacheco. A
Genetic Algorithm for Discovering Interesting Fuzzy
Prediction Rules: Applications to Science and
Technology Data. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-
2002) 343-350, 2002.

Genetic

www.intechopen.com

[14] S. F. Smith. A learning system based on genetic

adaptive algorithms. Doctoral dissertation,
Department of Computer Science. University of
Pittsburgh, 1980.

[15] R. Gallion, D.C. St.Clair, C. Sabharwal and W.E.
Bond. Dynamic ID3: A Symbolic Learning Algorithm
for Many-Valued Attribute Domains. Proceedings of
the 1993 Symposium on Applied Computing 14-20,
1993.

[16] J. R. Quinlan. Induction on Decision Trees. Machine
Learning 1:81-106, 1986.

[17] J. R. Quinlan. Decision Trees as Probabilistic
Classifiers. Proceedings of the Fourth International
Workshop on Machine Learning 31-37, 1987.

[18] R. S. Michalski and R.L. Chilausky. Learning by
being told and learning from examples. International
Journal of Policy Analysis and Information Systems
4:125-161, 1980.

[19] P. Clark and T. Niblett. The CN2 induction
algorithm. Machine Learning 3(4):261-283, 1989.

[20] R. L. Rivest, Ronald L. Learning decision lists.
Machine Learning 2:229-246, 1987.

[21] Janikow C. Z. A knowledge-intensive GA for
supervised learning. Machine Learning 13:189-228,
1993.

[22] L. B. Booker, D.E. Goldberg and J.H. Holland.
Classifier systems and genetic algorithms. Artificial
Intelligence 40:235-282, 1989.

[23] A. Giordana and F. Neri. Search-intensive concept
induction. Evol. Comput. 3(4):375-416, 1995.

[24] C. Anglano and M. Botta NOW G-Net: Learning
classification programs on networks of workstations.
IEEE Trans. Evol. Comput. 6(5):463-480, Oct. 2002.

[25] R. S. Parpinelli, H.S. Lopes and A.A. Freitas. Data
Mining with an Ant Colony Optimization Algorithm.
IEEE Transactions on Evolutionary Computation
6:321-332, 2002.

[26]]. Casillas, O. Cordon and F. Herrera. Learning Fuzzy
Rules using Ant Colony Optimization Algorithms.
Proceedings of the 2nd International Workshop on
Ant Algorithms (ANTS 2000) 13-21, 2000.

[27] S. Abe and M. Lan. Fuzzy rules extraction directly
from numerical data for function approximation.
IEEE Transactions on Systems, Man and Cybernetics,
25(1):119-129, 1995.

[28] M. Delagado, A.F. Gomez-Skorneta and F. Martin. A
fuzzy clustering-based rapid prototyping for fuzzy
rule-based modelling. IEEE Transactions on Fuzzy
Systems 5(2):223-233, 1997.

[29] M. Umano, H. Okamoto, I. Hatono and H. Tamura.
Generation of fuzzy decision trees by fuzzy id3
algorithm and its application to diagnosis by gas in
oil, Japan-U.S.A. Symposium, pp. 1445-1450, 1994.

[30] C. Z. Janikow. Learning Fuzzy Controllers by Genetic
Algorithms. Proceedings of the 1994 ACM
Symposium on Applied Computing 232-236, 1994.

www.intechopen.com

[31] S. Yao, C. Wei and Z. He. Evolving fuzzy neural
networks for extracting rules. Proc. 5th IEEE Int.
Conf. Fuzzy Systems (FUZZ-IEEE "96) 361-367, 1996.

[32] K. Lee, D. Kwang and H. L.Wang. A fuzzy neural
network model for fuzzy inference and rule tuning.
Int. J. Uncertainty, Fuzziness Knowledge- Based Syst.
2:265-277, 1994.

[33] H. Ishibuchi, R. Fujioka and H. Tanaka. Neural
networks that learn from fuzzy if-then rules. IEEE
Trans. Fuzzy Syst. 1:85-97, 1993.

[34] N. R. Pal and T. Pal. On rule pruning using fuzzy
neural networks. Fuzzy Sets Syst. 106:335-347, 1999.

[35] J. J. Shann and H.C. Fu. A fuzzy neural network for
rule acquiring on fuzzy control system. Fuzzy Sets
Syst. 71:345-357, 1995.

[36] T. Pal. Evolutionary approaches to rule extraction for
fuzzy logic controllers. Advances in Soft Computing,
(Lecture Notes Series in Artificial Intelligence)
2275:425-432, 2002.

[37] B. H. Roubos and M. Setnes. Compact fuzzy models
through complexity reduction and evolutionary
optimization. Proc. 9th IEEE Int. Conf. Fuzzy
Systems (FUZZ-IEEE’2000) 2:762-767, 2000.

[38] A. Krone, P. Krause and T. Slawinski. A new rule
reduction method for finding interpretable and small
rule bases in high dimensional search spaces. Proc.
9th IEEE Int. Conf. Fuzzy Systems (FUZZ-IEEE’2000)
2:694-699, 2000.

[39] P. T. Chan, W.F. Xie and A.B. Rad. Tuning of fuzzy
controller for an open-loop unstable system: a genetic
approach. Fuzzy Sets Syst. 111:137-152, 2000.

[40] R. R. F. Mendes, F.d.B. Voznika, A.A. Freitas and]J.C.
Nievola. Discovering Fuzzy Classification Rules with
Genetic Programming and Co-Evolution. Lecture
Notes in Artificial Intelligence 2168:314-325, 2001.

[41] K. C. Tan, A. Tay, T.H. Lee and C.M. Heng. Mining
Multiple Comprehensible Classification Rules using
Genetic Programming. Proceedings of the Congress
on Evolutionary Computation. CEC '02., 2:1302-1307,
2002.

[42] C. Zhou, W. Xiao, T.M. Tirpak and P.C. Nelson
Evolving accurate and compact classification rules
with gene expression programming. IEEE Trans.
Evol. Comput. 7(6):519-531, Dec. 2003.

[43] F. Hoffmann. Combining Boosting and Evolutionary
Algorithms for Learning of Fuzzy Classification
Rules. Fuzzy Sets and Systems, Article in Press -
Uncorrected Proof, 2003.

[44] S. W. Wilson. Classifier fitness based on accuracy.
Evol. Comput. 3(2):149-175, 1995.

[45] M. V. Butz, T. Kovacs, P.L. Lanzi and S.W. Wilson.
Toward a theory of generalization and learning in
XCS. IEEE Trans. Evol. Comput. 8(1):28-46, Feb. 2004.

[46] J. Kennedy and R.C. Eberhart. Particle swarm
optimization. Proc. IEEE Int. Conf. Neural Networks
1942-1948, 1995.

Naveed Kazim Khan, Abdul Rauf Baig and Muhammad Amjad Igbal:

Opposition-Based Discrete PSO Using Natural Encoding for Classification Rule Discovery

[47] J. Kennedy and R.C. Eberhart. A Discrete Binary
Version of the Swarm Algorithm.
Proceedings of the World Multiconferenceon
Systemics, Cybernetics and Informatics 4104-4109,
1997.

[48] E. C. Laskari, K.E. Parsopoulos and M.N. Vrahatis.
Particle

Particle

Swarm Optimization for Integer
programming. Proceedings of the IEEE Congress on
Evolutionary Computation 2:1582-1587, 2002.

[49] A. Salman, I. Ahmad and S. Al-Madani. Particle
Swarm Optimization for Task Assignment Problem.
Microprocessors and Microsystems 26(8):363-371,
2002.

[50] H. Yoshida, K. Kawata, Y. Fukuyama and Y.
Nakanishi. A Particle Swarm Optimization for
Reactive Power and Voltage Control Considering
Voltage Stability. Proceedings of the International
Conference on Intelligent System Application to
Power System 117-121, 1999.

[51] Y. Fukuyama, S. Takayama, Y. Nakanishi and H.
Yoshida. A Particle Swarm Optimization for Reactive
Power and Voltage Control in Electric Power
Systems. Proceedings of the Genetic and
Evolutionary Computation Conference 1523-1528,
1999.

[52] L. Schoofs and B. Naudts. Swarm Intelligence on the
Binary Constraint Satisfaction Problem. Proceedings
of the IEEE Congress on Evolutionary Computation
2:1444-1449, 2002.

[53] M. Clerc. Discrete Particle Swarm Optimization
HNlustrated by the Traveling Salesman Problem.
Technical report, 2000,
http://clerc.mauriceJree.fr/pso/

12 IntJ Adv Robotic Sy, 2012, Vol. 9, 191:2012

[54] J. Aguilar-Ruiz, R. Girdldez and J Cristébal. Natural
Encoding for Evolutionary Supervised Learning.
IEEE Transactions on Evolutionary Computation
11(4):466-479, 2007.

[55] R.T. Alves, M.R. Delgado, H.S. Lopes and A.A.
Freitas. An artificial immune system for fuzzy-rule
induction in data mining. Proc. Parallel Problem
Solving from Nature (PPSN-2004), LNCS 3242:1011-
1020, 2004.

[56] T. Sousa, A. Silva and A. Neves. Particle Swarm
based Data Mining Algorithms for classification
tasks. Parallel Computing 30:767-783, 2004.

[57] R. S. Parpinelli, H.S. Lopes and A.A. Freitas. Data
Mining with an Ant Colony Optimization Algorithm.
IEEE Trans. on Evolutionary Computation, special
issue on Ant Colony algorithms 6(4):321-332, 2002.

[58] N. Holden and A.A.
classification of G-Protein-coupled receptors with a
PSO/ACO algorithm. Proc. IEEE Swarm Intelligence
Symposium 77-84, 2006.

[59] J. Smaldon, A.A. Freitas. A New Version of the Ant-
Miner Algorithm Discovering Unordered Rule Sets.
In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2006), 43-50.

[60] D. Martens and M.D. Baker. Classification with ant
colony optimization. IEEE Transactions on
Evolutionary Computation, 11(5):651-665, 2007.

[61] http://archive.ics.uci.edu/ml/

Freitas. Hierarchical

www.intechopen.com

