
686 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

Correlation as a Heuristic for Accurate and
Comprehensible Ant Colony Optimization

Based Classifiers
Abdul Rauf Baig, Member, IEEE, Waseem Shahzad, and Salabat Khan

Abstract—The primary objective of this research is to propose
and investigate a novel ant colony optimization-based classi-
fication rule discovery algorithm and its variants. The main
feature of this algorithm is a new heuristic function based on
the correlation between attributes of a dataset. Several aspects
and parameters of the proposed algorithm are investigated by
experimentation on a number of benchmark datasets. We study
the performance of our proposed approach and compare it with
several state-of-the art commonly used classification algorithms.
Experimental results indicate that the proposed approach builds
more accurate models than the compared algorithms. The high
accuracy supplemented by the comprehensibility of the discov-
ered rule sets is the main advantage of this method.

Index Terms—Ant colony optimization, classification
algorithms, data mining.

I. Introduction

SWARM intelligence algorithms [1]–[3] are based on the
study and modeling of the collective behavior of small

and simple entities, and are considered a genre of population-
based algorithms [4]. Ant colony optimization (ACO)
[5]–[9] is a metaheuristic covered under the umbrella of swarm
intelligence. It is based on the food foraging behavior of ants.
In recent years, ACO has increasingly been used as an effective
search method for solving complex and difficult combinatorial
optimization problems, including those related to data mining
[5], [9], [10].

Classification is one of the main data mining tasks
[11]–[13]. Many classification algorithms already exist, such
as decision trees, neural networks, k-nearest neighbor clas-
sifiers, and support vector machines. Some of them (e.g.,
neural networks and support vector machines) act as black
box systems and their manner of reasoning is opaque to users,
while others are easily comprehensible (e.g., decision tress).
In many applications, both comprehensibility and accuracy are
required.

Manuscript received January 29, 2012; revised July 31, 2012; accepted
October 15, 2012. Date of publication December 5, 2012; date of current
version September 27, 2013.

A. R. Baig is with Imam Muhammad bin Saud Islamic University, Riyadh,
Saudi Arabia, on leave from the National University of Computer and
Emerging Sciences, Islamabad 44000, Pakistan (e-mail: rauf.baig@nu.edu.pk).

W. Shahzad and S. Khan are with the National University of
Computer and Emerging Sciences, Islamabad 44000, Pakistan (e-mail:
waseem.shahzad@nu.edu.pk; salabat.khan@nu.edu.pk).

Digital Object Identifier 10.1109/TEVC.2012.2231868

Classification rules have the advantage of comprehensibility.
The classification rule discovery problem is: given a set
of training data comprising one or more attributes and a
class attribute, we discover rules governing the separation of
that data into different classes. ACO-based classification rule
discovery algorithms have shown promising results [14]–[18].
In this paper, our focus is on exploring a new heuristic function
and utilizing it in the framework of ACO. We propose three
variants of a novel algorithm for the discovery of classification
rules. Our approach has the desirable properties of high
accuracy and classifier comprehensibility.

The remainder of this paper is organized as follows. In
Section II, we explain the basic concepts of ACO and give
an overview of existing ACO algorithms for classification
rules discovery. Section III describes our proposed approach.
In Section IV, we discuss the experimental results on some
publicly available data sets and analyze its various aspects.
Section V concludes this paper and gives some future direc-
tions of research.

II. ACO and Classification Rule Discovery

In this section, we give a summary of ACO and review
the previous efforts for its application to the classification rule
discovery process.

A. ACO

ACO is a family of metaheuristics, initially proposed by
Dorigo [5], based on the food foraging behavior of biological
ants. It is considered as a branch of swarm intelligence (and,
in general, a genre of population-based heuristic algorithms).

Ants pass on the information about the trail they are
following to other ants by spreading a chemical substance,
called pheromone, in the environment. The concentration of
pheromone on a given path acts as a guide for later ants.
Ants that arrive in the vicinity are more likely to take the
path with higher concentration of pheromone than the paths
with lower concentrations. The pheromone evaporates with
time and becomes insignificant if not enforced by the passage
of more ants. This indirect form of communication between
ants helps them to establish a short path between their nest
and a food source. Ants taking the shorter of the available
paths return sooner and thus concentration of pheromone on

1089-778X c© 2012 IEEE

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 687

that path is reinforced more quickly than on competing longer
paths.

This food foraging behavior has been modeled in the
ACO metaheuristic. Given a problem whose solution can be
represented as a combination of components, an artificial ant
is sent to construct a solution. Using the terminology of
graphs, we assume vertices to be the possible components
of the solution and edges to be pairs of these components.
An edge can also be visualized as a hypothetical connec-
tion or path between a pair of components. Each edge has
an associated pheromone. An ant constructs a solution by
selecting components one by one. This selection is done
probabilistically based on the pheromone concentrations on
edges of competing components. A constructed solution is
then evaluated by a measure of fitness. The components of the
solution are assigned pheromone concentrations proportional
to the quality of the solution. Subsequent ants thus have a
higher probability of selecting those components again which
have contributed toward a better solution. The components
with higher pheromone concentrations are thus identified as
contributing to a good solution and repeatedly appear in the
solutions. A heuristic value of each component is also added
in the probabilistic selection, if such a heuristic is available.
Usually, after sufficient iterations, the ants converge on a good,
if not the optimal, solution.

For the application of ACO to a problem, we should be
able to represent its solution as a combination of different
individual components. Furthermore, there should be a method
to determine the fitness or quality of the solution. A heuris-
tic measure for the solution’s components is also desirable
although not necessary. Since the early 90s, different ACO
algorithms have been proposed which differ in the manner of
probability calculation, pheromone update, etc. Three of the
more well-known and successful algorithms are ant system
(AS) [6], MAX–MIN ant system (MMAS) [7], and ant colony
system (ACS) [8]. They mainly differ in two ways: construc-
tion of new solutions and update of pheromone levels.

B. Solution Construction

In all of these three algorithms, an ant constructs a solution
by probabilistically selecting its components one by one. When
it has selected a component i and has so far constructed
the partial solution, the probability of selecting the next
component j is given by

Pij(t) =
τα
ijη

β
ij

Total components∑
j=1

xj{τα
ijη

β
ij}

(1)

where xj is 1 if the component j has not already been used
in the partial solution constructed by the ant and 0 otherwise.
The parameters α and β determine the relative importance of
the pheromone τij versus the heuristic information ηij .

Equation (1) is used in all three algorithms. However, ACS
is different from the other two algorithms in that it uses a
random variable q uniformly distributed over [0, 1] and a
parameter q0 for determining whether (1) will or will not be
used for calculating the next transition of an ant. If q = q0,

then (1) is not used and the component with maximum value
of τij · η

β
ij is selected from the available components.

C. Pheromone Update

A user-defined number of ants (called a colony) construct
their solutions. When all the ants have constructed their
solutions, these solutions are evaluated and pheromone is
updated according to the quality of these solutions.

In AS, the pheromone is updated for each of the solutions.
The pheromone τij is associated with the edge joining the
components i and j and is updated as follows:

τij ← (1 − ρ) · τij +
m∑
t=1

�τt
ij (2)

where ρ is the evaporation rate, and m is the number of ants.
The quantity of pheromone laid on edge (i, j) by ant t is
represented by �τt

ij and it is a function of the quality of the
solution constructed by the ant.

In MMAS only the pheromone on the best solution’s trail
are updated. Furthermore, the value of the pheromone is
bound. The pheromone update is implemented as follows:

τij ← [
(1 − ρ) · τij + �τbest

ij

]τmax

τmin
(3)

where τmax and τmin are, respectively, the user-defined upper
and lower bounds on the pheromone. The value inside the
bracket is considered as τmax if it is greater than τmax and τmin

if it is less than τmin. The best solution to utilize for the update
can be the best one found by the current colony of ants or it
can be the best found from the start of the algorithm. This is
a user decision.

In ACS there is a local pheromone update after each
transition of an ant, in addition to the usual pheromone update.
The local update is

τij = (1 − ϕ) · τij + ϕ · τ0 (4)

where ϕ ∈ (0, 1] is the pheromone decay coefficient, and τ0

is the value of the pheromone used for initialization at the
beginning of the algorithm. This decreasing of pheromone
values on the utilized components discourages subsequent ants
of the current colony to traverse the same path. This makes it
more likely that different ants will produce different solutions
and thus encourages diversity of solutions produced. After a
colony of ants has constructed its solutions, the pheromone
is updated for the best ant. This best ant can be either the
best among the current colony or the best-so-far. The update
formula is

τij ←
{

(1−ρ) · τij + ρ · �τij, if(i, j) belongs to the best solution
τij, otherwise.

(5)
For all of these three algorithms, the process of solution

construction, evaluation, and pheromone updates by a colony
of ants constitutes one pass of the algorithm. The algorithm
iterates several times. In each of these iterations, the expe-
rience of previous iterations is available to guide the ants in
the form of pheromone values. The best solution found during
these iterations is retained as the discovered solution.

688 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

ACO is naturally suited to discrete optimization problems.
Since its inception, it has been applied to solve many problems
[2], [4], such as quadratic assignment, job scheduling, subset
problems, network routing, vehicle routing, load dispatch in
power systems, and bioinformatics. It has also been applied
for classification rule discovery, which is the subject of the
present work.

D. ACO for the Discovery of Classification Rules

In recent years, several attempts have been made to ap-
ply ACO for the discovery of classification rules. The first
ACO-based algorithm for this purpose, called AntMiner, was
proposed by Parpinelli et al. [14]. In AntMiner, given some
data, we conduct a heuristic search for finding rules governing
the data. The core of AntMiner algorithm is the incremental
construction of a classification rule of the type: “IF <term1

AND term2 AND . . . > THEN <class>” by an ant. Each
term is an attribute-value pair related by an operator. The
authors only use “=” as the relational operator. An example
term is “Color = red.” The attribute’s name is color and red
is one of its possible values. Since only “=” is used, any
continuous (real-valued) attributes present in the data have to
be discretized in a preprocessing step.

AntMiner is a sequential covering algorithm. It discovers a
rule and the training samples correctly covered by this rule
(i.e., samples that satisfy the rule antecedent and have the
class predicted by the rule consequent) are removed from
the training set. Subsequently, the algorithm discovers another
rule using the reduced training set and after its discovery
the training set is further reduced by removing the training
samples covered by the newly discovered rule. This process
continues until the training set is empty or almost empty.

For the discovery of each rule, several candidate rules are
constructed by artificial ants. An ant constructs a rule by
starting with an empty rule and incrementally adding one
condition at a time. The choice of adding a term in the
current partial rule is made probabilistically and is based on its
pheromone and heuristic values. The heuristic used is based
on the entropy of terms and their normalized information gain.
After the antecedent part of a rule has been constructed, the
consequent of the rule is assigned by a majority vote of the
training samples covered by the rule. The constructed rule
is then pruned of irrelevant terms in an effort to improve
its accuracy. The quality of the pruned rule is determined
and pheromone values are updated on its basis. Then another
rule is constructed. After all ants have constructed their rules,
the best one among them is added to the list of discovered
rules. The training samples correctly classified by that rule are
removed from the training set. Then another rule is discovered
in the same manner. The list of discovered rules grows and
the algorithm terminates when an exit criterion is met. The
output of the algorithm is an ordered set of rules. This rule
set can then be used to classify unseen data.

Liu et al. proposed density estimation as a heuristic function
in AntMiner2 [15] and AntMiner3 [16], [17], and show that
this simpler heuristic does the job as well as the com-
plex one used by AntMiner. Another novelty of AntMiner3
is the use of a different pheromone update method. The

pheromone is updated and evaporated for only those conditions
that occur in the rule and the pheromone values of unused
conditions are not evaporated. In this way exploration is
encouraged.

The same simpler heuristic is also used in AntMiner+
proposed by Martens et al. [18]. However, it differs from
the previous AntMiners in many different aspects. A different
search environment for the ants is defined, class label of rules
is chosen prior to their construction, the ability to form interval
rules is incorporated, a different measure for determining rule
quality is used, and the selection of two important ACO
parameters alpha and beta are made a part of the search
process. Only the iteration-best ant is allowed to update the
pheromone and the range of the pheromone trail is limited
within an interval according to MMAS.

Other works on AntMiner include [19], in which an algo-
rithm for discovering unordered rule sets has been presented.
In [20], the PSO algorithm is used for continuous valued
attributes and ACO for nominal valued ones and these two
algorithms are jointly used to construct rules. The issue of
continuous attributes has also been dealt with in [21] and [22].
An AntMiner version for multilabel classification problem can
be found in [23]. Relevant background information regarding
AntMiners can be found in [24] and [25].

While utilizing ACO-based algorithms, the heuristic for
guiding the selection of the next component, along with
pheromone values, is very important. The heuristic value gives
an indication of the usefulness of taking the next step and
thus provides a basis to guide the search. In all the above-
mentioned AntMiners, the heuristic value of a candidate term
is calculated without considering any other previously chosen
term. Our proposed heuristic is based on the strength of the
association between the chosen term, the candidate term, and
the chosen class label. This idea, which reduces the search
space considerably, was first proposed in [26] and [27]. In
this paper, we refine the heuristic and describe three ACO-
based algorithms for its utilization. These algorithms have the
advantage of comprehensibility of discovered rules combined
with high accuracy.

III. Correlation and Coverage-Based AntMiner

All the AntMiner algorithms [14]–[18] for ACO-based
discovery of classification rules have the following.

1) A solution (or search) space representation in which
artificial ants can walk and search for a solution.

2) A policy for selecting components of the solution by
the ants taking into account the pheromone and heuristic
values (that is, how an ant chalks out a path for itself in
the representative solution space).

3) A stopping criterion (or criteria) for ending an ant’s
walk.

4) A fitness criterion for evaluating the found solution.
5) A policy for updating the pheromone values on the edges

between components.
6) A criterion (or criteria) for stopping the ant runs for a

particular rule.
7) A criterion (or criteria) for stopping the algorithm.

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 689

In the following subsections, we present our search space,
an algorithm called AntMiner-CC and its variants, and discuss
the above-mentioned aspects one by one.

A. Search Space

Before conducting a search for finding rules governing some
given data we need to define a space in which the search can
take place. Our search space is basically the same as that of
the original AntMiner algorithm [14]. This search space is
defined with the help of the training dataset. The dimensions
(or coordinates) of the search space are the attributes of the
dataset. The possible values of an attribute constitute the range
of values for the corresponding dimension in the search space.
For example, a dimension called color may have three possible
values {red, green, blue}. The task of the ant is to visit a
dimension and choose one of its possible values to form an
antecedent condition of the rule (e.g., color = red). The possi-
ble antecedent conditions (or attribute-value pairs) are called
terms, and the total number of terms for a dataset is equal to

Total terms =
a∑

n=1

bn (6)

where a is the total number of attributes (excluding the class
attribute) and an attribute An can take on bn number of possible
values.

The graph for the search space is constructed as follows.
Each term corresponds to one vertex of the graph. Thus, there
are as many vertices as the number of terms in addition to a
start and a stop vertex. The start vertex is forward connected
to all the other vertices (except the stop vertex). Furthermore,
all the vertices (except the start vertex) are forward connected
to the stop vertex. An ant starts its search from the start vertex
and ends it at the stop vertex. When an ant has visited a
dimension (i.e., a term from an attribute has been chosen),
it cannot be visited again by that ant. This prohibition means
that rule antecedent conditions of the type “Color = Red OR
Color = Green” are not allowed. In the search space there is
no ordering in which the dimensions can be visited and an
ant may pick its next term from any unvisited dimension. For
clarity, the search space can be drawn with all the vertices
placed in a single column or layer and this layer duplicated
as many times as the number of attributes in the dataset
(excluding the class attribute). When arranged in this manner,
the vertices of a layer are forward connected only to the
vertices of the next layer.

An example search space is shown in Fig. 1(a) and (b).
There are four attributes A1, A2, A3, and A4 having 3, 2, 3,
and 2 possible values, respectively. Each of these values (or
terms) is represented as a vertex in the graph of Fig. 1(a). An
ant starts from the start vertex and constructs a rule by adding
conditions (attribute-value pairs or terms) for the antecedent
part. After a term has been selected, all the other terms from
the same attribute become prohibited for the ant. The rule
construction process is stopped when the ant reaches one of
the stop vertices. A different representation of the same search
space is shown in Fig. 1(b). In this representation, there are
as many layers of these vertices as the number of attributes.

Fig. 1. (a). Example problem’s search space represented as a graph.
(b) Different representation of the search space shown in (a).

Suppose an ant starts from the start vertex and chooses T31

(the first term of the attribute A3) as the first condition for the
rule it is constructing. It cannot subsequently select any more
terms from attribute A3 for the current rule. Further suppose
that the ant subsequently chooses T13, T41 and T21. The Stop
vertex at the end is reached if there are no more permissible
terms available. The Stop vertices shown at the bottom can
also be reached if one of the two other criteria of stopping are
fulfilled (discussed later).

AntMiner+ [18] uses a different search space. Each layer
has vertices corresponding to the terms of only one of the
attributes. The vertices of one layer are forward connected only
to the vertices in the next layer. There is also a start vertex
and a stop vertex. The class attribute is also represented in
the search space and the attribute-value pairs for this attribute
constitute its first layer of vertices. However, the vertex for the
attribute-value pair which occurs in majority of data samples
is excluded. Two parameters, called alpha and beta, which are
used to guide the search are also included in the search space.
User defined values of alpha and beta constitute the vertices
of the second and third layers. The vertices of alpha are
completely connected to the vertices of beta. The discretization
of continuous valued attributes is not done as a preprocessing

690 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

Fig. 2. AntMiner-CC algorithm.

step, but is handled within the search space. For this purpose,
each continuous valued attribute has two layers of vertices
instead of one. This mechanism enables ants to include interval
conditions in their rules. Each of the ants begins its walk by
choosing one of the classes (excluding majority class), and
then selects a value for alpha and another one for the beta
parameter. Due to the forward connection of vertices an ant
is bound to move in an ordered fashion from the first layer to
the last layer. An ant, however, may or may not choose a term
from the layer it is visiting. When a layer has been visited,
it cannot be visited again by an ant. Only the last layer of
vertices is connected to the stop vertex.

1) Fixed Order or Flexible Order: The fixed order of term
selection, as is done in AntMiner+, introduces a user-defined
bias for splitting the data by attributes occurring earlier in
the search space. Hence, we do not impose a fixed order of
attributes in our search space.

2) Class Choice Prior or After Rule Construction:
Experiments show that selection of class label prior to rule
construction helps to focus the search [18], [26]. In context
of the present research, it also helps by allowing the use of a
more efficient heuristic function (described later).

In our algorithm the class label is selected prior to the
rule construction, but it is not selected by the individual ants.
The class is chosen once and becomes fixed for all the ant
runs made in the search of a rule. Class selection is done
probabilistically, by roulette wheel selection, on the basis
of the weights of classes present in the yet uncovered data
samples. The weight of a class is the ratio of its uncovered
data samples to the total number of uncovered data samples
(excluding the data samples belonging to default class). If 40%

of the yet uncovered data samples are of class A, then there
is a 40% chance of its selection.

In AntMiner [14], the class label is assigned after a rule has
been constructed. It is determined according to the majority
class label among the cases covered by the rule. In AntMiner+
[18], the selection of class label is done prior to the rule
construction but it is done by each and every ant and does
not remain fixed for all the ant runs made for the discovery
of a rule.

3) Selection of Alpha and Beta and Discretization of
Continuous Variables: Alpha and beta are parameters for
balancing the relative importance of pheromone and heuristic
values. We can determine acceptable values of these parame-
ters by experimenting with different datasets. The selection
of alpha and beta by each and every ant, as is done in
AntMiner+ [18], increases the complexity of search. Including
the determination of these values in the main search process is
beneficial only if there is a considerable variation in their val-
ues from dataset to dataset. Furthermore, the limited discrete
valued options made available for them in the search space, as
is done in AntMiner+ [18], introduce additional user-defined
parameters.

Similarly, the discretization of continuous variables within
the algorithm, as is done in AntMiner+ [18], also introduces
complexity and may favor unnecessary long convergence
times, with few benefits. There are many efficient discretiza-
tion algorithms available which can be used as a preprocessing
step. In our case, the discretization of continuous valued
attributes is done as a preprocessing step and is not handled
within the search space (and not even within the algorithm).

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 691

4) Search for Rules of Majority Class: Rules for majority
class samples are not discovered in one of our proposed algo-
rithms. In that algorithm, the majority class label is assigned
as the class label of a default rule appended at the end of the
discovered rule set. Our experiments (Section IV-A) show that
this helps to improve the accuracy of the classifier. Majority
class rules are also not discovered by AntMiner+ [18] due to
the same reason.

B. Complete Algorithm

The first of our algorithms, AntMiner-CC, is as shown in
Fig. 2. The heart of the algorithm is the REPEAT-UNTIL
loop where several candidate rules are constructed. The best
one among them is pruned and added to the discovered rule
list. The samples correctly covered by the discovered rule
are removed from the training set and then another rule is
discovered (WHILE loop). The output of the algorithm is an
ordered set of rules which can be used to classify unseen data.

C. Rule Construction

The main part of the rule discovery process is rule construc-
tion. One rule is discovered after one execution of the WHILE
loop of Fig. 2. For the discovery of this rule, several rules
are constructed and evaluated. Each iteration of the REPEAT-
UNTIL loop of Fig. 2 sends an ant to construct a rule.
The quality of the rule constructed by an ant is determined
and pheromone values are updated and then another ant is
sent to construct another rule. Each new ant is guided by
the experience of the previous ants, available in the form of
pheromone values. The best one among these rules is added
to the list of discovered rules after some postprocessing.

Classical ACO algorithms have pheromone updates after
several ants have constructed their solutions, whereas in our
algorithm, pheromone update is done by each and every ant.
Thus, according to classical ACO terminology, our ant colony
consists of only one ant. In the rest of this paper, we refer to
the ant runs made during the complete execution of REPEAT-
UNTIL loop (i.e., one execution of the WHILE loop) by using
the words batch of ants which is a short form for batch of 1-ant
colonies.

The process of rule construction for a batch of ants starts
by assigning a class label to the ants. A class label is chosen
from the set of class labels present in the uncovered samples
of the training set. Majority class label is excluded from this
selection process. The selected class label remains constant for
a batch of ants (one iteration of the WHILE loop of Fig. 2).

After the assignment of class label, ants are sent out, one
by one, to construct rules. An ant starts with an empty list
of conditions and constructs the antecedent part of the rule by
adding one condition at a time. The choice of adding a term in
the current partial rule is based on the pheromone values and
heuristic values associated with the edges from the previously
added term to the candidate terms. An ant terminates its rule
construction when there are no more attributes left for addition
in the rule. Early termination of rule construction is also
possible, if any one of the two criteria of stoppage, described
later, is met. The different aspects of rule construction are as
follows.

1) Probabilistic Selection of Conditions for Rule Con-
struction: An ant incrementally adds terms as conditions in
the antecedent part of the rule that it is constructing. The
selection of the next term is subject to the restriction that a
term from the same attribute should not be already present in
the current partial rule. In other words, once a term has been
included in the rule then no other term from that attribute can
be considered. Subject to this restriction, the probability of
selection of a term for addition in the current partial rule is
given by the equation

Pij(t) =
τα
ij(t)ηβ

ij(s)
Total terms∑

k=1
xk{τα

ik(t)ηβ
ik(s)}

(7)

where τij(t) is the amount of pheromone associated with
the edge between termi and termj for the current ant (the
pheromone value is updated after passage of each ant), ηij(s)
is the value of the heuristic function for the current iteration
s of the WHILE loop of Fig. 2. It is constant for a batch
of ants. The denominator is used to normalize the numerator
value for all the possible choices. The binary variable xk is set
to 1 if a termk is selectable by the current ant at this stage,
otherwise it is 0. Selectable terms belong to those attributes
that have not become prohibited due to the selection of a
term belonging to them. The termj has to be one of the
selectable terms. The value τik(t) is the amount of pheromone
associated with the edge between termi and termk for the
current ant and ηik(s) is its current value of the heuristic
function. The parameters α and β are used to control the
relative importance of the pheromone and heuristic values in
the probability determination of the next movement of the ant.

Equation (7) is an adaptation of the classical ACO proba-
bilistic selection (1) and used in AS, MMAS, and ACS (where
the state transition is also dependent on one other equation).
The same adaptation is used in AntMiner [14] with α = β = 1,
and also in AntMiner+ [18].

2) Pheromone Information: Initialization of pheromone
values on an ant’s trail and its enhancement or depletion for
guiding subsequent ants is one of the basic and important
aspects of using ACO metaheuristic. At the beginning of an
iteration of the WHILE loop, the pheromone values on edges
between all terms are initialized with the same amount of
pheromone. The initial pheromone is

τij(t = 0) =
1∑a
i=1 bi

(8)

where a is the total number of attributes (excluding the class
attribute) and bi is the number of possible values that can be
taken on by an attribute Ai. Since all the pheromone values are
the same, the first ant has no historical information to guide
its search. Subsequently, the pheromone values are updated
according to a policy explained in Section III-D, and the next
ant has access to the experience of previous ant(s).

AntMiner [14] uses (8) for pheromone initialization.
AntMiner+ [18] utilizes MMAS and sets all the pheromone
equal to a maximum value called τmax.

3) Heuristic Information: Along with pheromone values,
the heuristic for guiding the selection of the next component is

692 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

very important. The heuristic value gives an indication of the
usefulness of taking the next step and thus provides a basis to
guide the search. For ACO-based algorithms, heuristic values
are either associated with the vertices, or with the edges.

All previously proposed AntMiners use heuristic functions.
AntMiner [14] utilizes a heuristic function based on the
entropy of the terms and their normalized information gain

log2 m − H(W |termj)∑
competing terms(log2 m − H(W |termj))

(9)

where W is the class attribute whose entropy H given termj

is defined as

H(W |termj) = −
m∑

k=1

(P(k|termj). log2 P(k|termj)) (10)

where k is one of the values of W and P(k|termj) is the
probability of having class label k for instances containing
termj .

AntMiner2 and AntMiner3 [15]–[17] use∣∣termj, majority class(termj)
∣∣∣∣termj

∣∣ (11)

and AntMiner+ [18] uses∣∣termj, class chosen by ant
∣∣∣∣termj

∣∣ . (12)

Equation (11) is calculated only once for each term for
the discovery of a rule in AntMiner2 and AntMiner3. In
AntMiner+, (12) is used which is class dependent and has to
be calculated as many times as the number of classes (minus
the default class) for each term and each discovered rule.

All these versions of AntMiner calculate the heuristic value
of a candidate termj without considering any other previously
chosen term. Our novel heuristic function takes into account
the correlation of the last selected term with the candidate term
along with its potential for maximizing correct coverage.

4) Correlation: The first portion of the heuristic function
is derived as follows. The actual correlation between the
committed classk and termi and the candidate termj is

Corrk,i,j =
P(termi, termj, classk)

P(classk).P(termi, termj)
. (13)

Correlation cannot be directly used for comparison pur-
poses because the only information it gives is about negative,
positive, or no correlation. It does not specify the degree of
correlation. The secondary reason is that it is not bounded
between 0 and 1. Hence we simplify it in the following
manner.

The value of P(classk) is same for all competing terms,
because it has been previously chosen and is fixed. Hence
we may safely ignore it for comparison purposes between the
competing terms. Thus, instead of (13) we can use

η′
k,i,j =

P(termi, termj, classk)

P(termi, termj)
. (14)

Fig. 3. Example of how the heuristic function facilitates better inter class
discrimination and larger correct coverage of the rule.

From the definition of probability, we can rewrite (14) as

η′
k,i,j =

∣∣termi, termj, classk

∣∣ /
N∣∣termi, termj

∣∣ /
N

=

∣∣termi, termj, classk

∣∣∣∣termi, termj

∣∣ .

(15)
This gives us the first component of our heuristic function.

5) Coverage: We add a second component to encourage
the selection of termj which increases the correct coverage

η′′
k,i,j =

∣∣termi, termj, classk

∣∣
|termi, classk| . (16)

6) Overall: Hence the overall heuristic function is

ηk,i,j =

∣∣termi, termj, classk

∣∣∣∣termi, termj

∣∣ .

∣∣termi, termj, classk

∣∣
|termi, classk|

=

∣∣termi, termj, classk

∣∣2

∣∣termi, termj

∣∣ . |termi, classk|
. (17)

The first portion gives a higher value to that term that
is strongly correlated with the already committed classk

and termi. This means the discovery of a rule with higher
confidence (termi ∧ termj => classk), if only these two terms
are considered. It also encourages early termination of rule
construction (described later). The second portion gives a
higher value to that term which has larger coverage given
classk and termi.

An example is shown in Fig. 3. Suppose the specified class
label is classk. An ant has recently added termi in its rule. It
is now trying to add another term from the set of available
terms. We take the case of two competing terms (termj1 and
termj2) which can be generalized to more terms. The heuristic
value for termj1 given termi and classk due to the first portion
of the heuristic function is∣∣termi, termj1, classk

∣∣ / ∣∣termi, termj1

∣∣ (18)

and for termj2 given termi and classk is∣∣termi, termj2, classk

∣∣ / ∣∣termi, termj2

∣∣. (19)

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 693

Thus the first portion encourages the inclusion of that term
which has better potential for inter class discrimination. We
also want the chosen term to maximize correct coverage of the
rule as much as possible. This is made possible by the second
portion of the heuristic function which assigns the values of

∣∣termi, termj1, classk

∣∣ / |termi, classk| (20)

and
∣∣termi, termj2, classk

∣∣ / |termi, classk| (21)

for the two competing terms.
Thus our heuristic function quantifies the relationship of the

term to be added with the most recently added term and also
takes into consideration the overall discriminatory capability
of the term to be added. Since the class label of the rule
is committed before the construction of the rule antecedents
hence our heuristic function is dependent on the class chosen
by the ant.

The heuristic values calculated according to (17) are normal-
ized before usage. The heuristic values on edges originating
from a termi are normalized by the summation of all heuristic
values on the edges between termi and other terms.

7) Heuristic Function for the First Term: The heuristic
value when considering the first term of the rule antecedent is
calculated on the basis of the following equation:

ηk,start,j =

∣∣termj, classk

∣∣∣∣termj

∣∣ .

∣∣termj, classk

∣∣
|classk|

=

∣∣termj, classk

∣∣2

∣∣termj

∣∣ . |classk|
. (22)

This equation is obtained by excluding termi from (17),
because it does not exist in this case. Equation (22) provides
the advantage of penalizing those terms that would lead to
very specific rules and thus helps in avoiding over-fitting. For
example, if a term occurs in just one training sample and its
class is the chosen class (classk), its heuristic value is low
(1/total training samples of classk).

An example heuristic matrix is shown in Fig. 4(a) and (b).
The elements of Fig. 4(a) are the heuristic values on edges
from Start vertex to vertices of the first layer of terms. They
are obtained by using (22). The elements of Fig. 4(b) are
heuristic values [obtained by using (17)] on edges between
terms in any two consecutive layers. For example, the first
row elements of Fig. 4(b) are the heuristic values for edges
from the term T11 to all other terms in the next layer. These
values are the same for edges between 1st and 2nd layer, 2nd
and 3rd layer, etc. In other words, the same matrix is used
for finding heuristic values for any two consecutive layers.
Furthermore, the matrix shown in Fig. 4(b) is asymmetric. The
heuristic value for selecting a term given another term is not
the same in reverse order of these terms. The heuristic values
are calculated once for a batch of ants and are dependent on the
class selected for that batch of ants and the samples present in
the current training set (i.e., those samples of original training
set which are not yet covered by any rule in the discovered
rule set). Before placement in this matrix, each raw heuristic

Fig. 4. Heuristic values for the example shown in Fig. 1.

value is normalized by division with the summation of other
raw heuristic values in its row.

The correlation-based heuristic function has the potential to
be effective in large dimensional search spaces. The heuristic
values are calculated only once for an iteration of the WHILE
loop of Fig. 2 and remains same for a batch of ants. It assigns
a zero value to the combination of those terms which do
not occur together for a given class label; thus efficiently
restricting the search space for the ants.

Equations (17) and (22) have not been used before in any
ACO-based classification rule discovery algorithm. In contrast
to our approach, each ant of AntMiner [14] continues its
attempts to add terms in its rule until it is sure that there
is no term whose addition would not violate the condition
of minimum number of covered samples. In AntMiner+ [18],
every ant has to traverse the whole search space and there are
no such short cuts.

8) Stopping Criterion for a Single Ant Run: Our basic
criterion for the stoppage of rule construction is that one
condition from every attribute has been included in the rule
[shown as Stop on the right-hand side in Fig. 1(b)]. In addition
to this, we use the criterion of homogenous class label to stop
the construction of a rule. The rule construction stops when
all the samples covered by the rule have homogenous class
labels. The third scenario in which rule construction stops is
that the probability of transition to all remaining permissible
terms is zero. The last two criteria are shown as Stop vertices
at the bottom of Fig. 1(b).

AntMiner [14] tries to add one term from each attribute, but
stops the rule construction process if only those terms are left
unused whose addition will make the rule cover a number of
training samples smaller than a user-defined threshold called
minimum samples per rule. In AntMiner+ [18], one term from
each attribute is added. However, each attribute has a “don’t
care” option that allows for its non-utilization in the rule.

694 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

D. Rule Fitness and Pheromone Update

1) Fitness or Quality of a Rule: ACO requires the evalua-
tion of generated solutions and uses it as a feedback for gener-
ation of new solutions. The correctness of this evaluation has
direct consequences on the search process. For classification
rule discovery problem we would like to have rules with high
confidence and large coverage. We measure the quality, Q, of
a rule by adding its confidence and coverage

Q =
TP

Covered
+

TP

N
(23)

where TP is the number of samples covered by the rule that
have the same class label as that of the rule’s consequent,
Covered is the total number of samples covered by the rule,
and N is the number of samples in the current training set
(i.e., those samples of original training set which are not yet
covered by any rule in the discovered rule set).

Equation (23) has been used in AntMiner+ [18], whereas
AntMiner [14] uses sensitivity multiplied by specificity as the
quality measure

Q =
TP

TP + FN
· TN

FP + TN
(24)

where FP is the number of samples covered by the rule that
have a class label different from that of the rule’s consequent
(false positives), FN is the number of samples that are not
covered by the rule but that have the same class label as that
of the rule’s consequent (false negatives), TN is the number
of samples that are not covered by the rule and that have a
class label different from that of the rule’s consequent (true
negatives).

2) Updating of Pheromone Values on Edges: The quality
of the generated rule is made available to the future ants by
means of pheromone update on edges. The pheromone values
of the whole system can be represented in the form of a
matrix. An example pheromone matrix is shown in Fig. 5.
The pheromone values are associated with the edges of the
search space. The elements of Fig. 5(a) are the pheromone
values on edges from Start vertex to vertices of the first layer
of terms. The elements of Fig. 5(b) are pheromone values on
edges between terms in any two consecutive layers. In other
words, the matrix values are valid for any two consecutive
layers and the pheromone values on edges originating from a
term to other terms are the same in all the layers of the search
space. For example, the first row elements of Fig. 5(b) are the
pheromone values for edges from the term T11 to all other
terms in the next layer. These values are the same for edges
between first and second layers, second and third layers, etc.
If an ant chooses the terms T31, T13, T41 and T21 for its rule,
then the elements τS,31, τ31,13, τ13,41 and τ41,21 are updated
according to (25) (given below). Elements of rows S, T31,
T13, T41, and T21 are then normalized. The remaining rows
remain unchanged. The pheromone matrix is asymmetric.

The amount of pheromone on the edges between consecu-
tive terms occurring in the generated rule is updated according
to the equation

τij(t + 1) = (1 − ρ)τij(t) +

(
1 − 1

1 + Q

)
τij(t) (25)

Fig. 5. Pheromone values for the example shown in Fig. 1.

where τij(t) is the pheromone value encountered by Antt (the
tth ant of the REPEAT-UNTIL loop) between termi and termj .
The pheromone evaporation rate is represented by ρ and Q is
the quality of the rule constructed by Antt .

The equation updates pheromone values by first evaporating
a percentage of the previously occurring pheromone and then
adding a percentage of the pheromone dependent on the
quality of the recently discovered rule. If the rule is good then
the pheromone added is greater than the pheromone evaporated
and the terms become more attractive for subsequent ants. The
evaporation in the equation improves exploration, otherwise
in the presence of a static heuristic function the ants tend to
converge quickly to the terms selected by the first few ants.
Equation (25) is according to AS and has been previously used
in AntMiner3, but with a different equation for determining
Q. It can also be shown to be equivalent to the ACS nonlocal
pheromone update equation.

Note that our pheromone matrix is asymmetric whereas the
matrix used in original AntMiner [14] is symmetric. The ma-
trix becomes asymmetric because for a constructed rule with
termi occurring immediately before termj , the pheromone on
edge between termi and termj is updated but the pheromone
on edge between termj and termi is not updated. This is done
to encourage exploration and discourage early convergence.

The next step is to normalize the pheromone values. Each
pheromone value is normalized by dividing it by the sum-
mation of pheromone values on edges of all its competing
terms. In the pheromone matrix (Fig. 5), normalization of the
elements is done by dividing them with the summation of
values of the row to which they belong. Note that for those
rows for which no change in the values has occurred for the
ant run under consideration, the normalization process yields
the same values as before. Referring to Fig. 5, normalization

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 695

of pheromone value of an edge originating from a term is done
by dividing it by the summation of all pheromone values of
the edges originating from that term. This process changes the
amount of pheromone associated with those terms that do not
occur in the most recently constructed rule but are competitors
of the selected term. If the quality of rule has been good and
there has been a pheromone increase on the terms used in
the rule then the competing terms become less attractive for
the subsequent ants. The reverse is true if the rule found is
not of good quality. The normalization process is an indirect
way of simulating evaporation of pheromone. Note that in
original AntMiner [14] every element of the pheromone matrix
is normalized by dividing it with the sum of all elements. This
is unnecessary and tends to discourage exploration and favor
early convergence.

E. Stopping Criterion for a Batch of Ants

For the discovery of one rule, a batch of ants is sent.
The ants are sent one by one and each ant constructs one
candidate rule. After the construction of a candidate rule its
quality is determined and the pheromone values on the trail
are updated accordingly. The pheromone values (along with
the heuristic values) guide the construction of next candidate
rule. Theoretically there may be as many candidate rules as
the user defined number of ants. An early termination of a
batch run (REPEAT-UNTIL loop) is possible if the last few
ants have constructed the same candidate rule. This implies
that the pheromone values on a trail have become very high
and convergence has been achieved. Since the heuristic values
for a batch of ants are static, any further rule construction
will most probably yield the same rule again. Hence the batch
of ants can be terminated prematurely. For this purpose, each
constructed rule is compared with the last rule and a counter is
incremented if both the rules are the same. If the value of this
counter exceeds a threshold “No. of rules converged,” then the
loop is terminated. In our experiments, we use a value of 10
for this threshold.

This method of early termination of REPEAT-UNTIL loop
is also used by AntMiner. In AntMiner+ there is no provision
for early termination of this loop and it terminates when the
pheromone values on one path converge to τmax and all other
paths have τmin, as required by the MMAS.

The best one among the candidate rules constructed by
a batch of ants is selected, postprocessed and added in the
discovered rule list. The dataset is emptied of the training
samples covered by that rule. Then the whole process is
repeated with the reduced dataset.

F. Postprocessing of Discovered Rules

After a candidate rule has been discovered we are faced with
the question: can we further improve its quality? One way to
improve a rule’s quality is by trying to prune it. Rule pruning
is the process of finding and removing any irrelevant terms that
might have been included in the constructed rule. Rule pruning
has two advantages. First, it increases the generalization of the
rule thus potentially increasing its predictive accuracy. Second,
a shorter rule is usually simpler and more comprehensible.

The rule pruning procedure starts with the full rule. It
temporarily removes the first term and determines the quality
of the resulting rule. It then replaces the term back and
temporarily removes the second term and again calculates the
quality of the resulting rule. This process continues until all the
terms present in the rule are dealt with. After this assessment,
if there is no term whose removal improves or maintains the
quality then the original rule is retained. However, if there is
a term whose removal improves (or maintains) the quality of
the rule then that term is permanently removed. If there are
two or more such terms then the term whose removal most
improves the quality of the rule is removed. The shortened
rule is again subjected to the procedure of rule pruning. The
process continues until any further shortening is impossible
(removal of any term present in the rule leads to decrease
in its quality) or if there is only one remaining term in the
rule.

It is pertinent to note that we again use the confidence and
coverage as the rule’s quality measure (23) for pruning pur-
pose, but another quality measure could also have been used
(e.g., confidence only). We also recall that the construction
of a rule continues until all the samples covered by it are of
homogenous class label or if there are no more terms to add
(Section III-C). In the first case of homogenous class label
samples, the confidence of the rule is already 100%. Any
decrease in confidence must be compensated by an increase
in coverage. A rule may thus get pruned on the basis of (23)
with lower confidence but better coverage than before. Pruning
cannot result in a decrease in coverage.

Rule pruning is a costly procedure. That is why we select
and try to prune only one, top quality, rule after all rules have
been discovered by a batch of ants. This means that pheromone
updates are done with un-pruned rules. The ideal option would
have been to check the rules for eligibility of pruning and
pruning them as soon as they are discovered, before updating
the pheromone values for the next ant.

The best rule is placed in the discovered rule set after
pruning and the training samples correctly covered by the rule
are flagged (i.e., removed) and have no role in the discovery
of other rules.

Rule pruning is also used by AntMiner [14] and AntMiner+
[18]. However, the rule quality criterion used in AntMiner is
different. Furthermore, in AntMiner each discovered rule is
subjected to rule pruning (prior to pheromone update) whereas
we prune only the best rule among the rules found during
the execution of the REPEAT-UNTIL loop of the algorithm
and our pheromone update is prior to and independent of rule
pruning. AntMiner+ also prunes the best rule. However, it is
pertinent to note that AntMiner+ has several iterations of the
REPEAT-UNTIL loop and in each iteration there are a 1000
ant runs. The best rule from these 1000 rules is pruned. In other
words, AntMiner+ prunes several rules for each rule inserted
in the rule set whereas we prune only one rule.

G. Final Rule Set

The best rule found after a complete execution of WHILE
loop of Fig. 2 is placed in the discovered rule set after pruning.
The training samples correctly covered by the rule are flagged

696 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

(i.e., removed) and they have no role in the subsequent rule
discovery process.

1) Stopping Criterion for Addition of Rules in the Rule
Set: After several iterations of the WHILE loop of Fig. 2, the
training set is almost empty and only a few samples are left.
Now we are faced with the question of when to stop this rule
discovery process. There are four major options.

1) The rule discovery process can be continued until the
training dataset is empty.

2) A separate validation set can be used to monitor the
training. The rule discovery process can be stopped
when the accuracy on the validation set starts to dip.

3) Specify a threshold on the number of training samples
present in the data set. If, after an iteration of the
REPEAT-UNTIL loop, the remaining samples in the
training set are equal to or below this specified threshold,
then the algorithm can be stopped. The threshold can be
defined as a percentage of the samples present in the
initial training set.

4) Specify a threshold on the maximum number of rules to
be found. The rule discovery process is stopped when
the number of discovered rules becomes equal to the
specified maximum limit.

All of these options have some drawbacks. The first option
usually leads to rules discovered at the tail-end covering only
one or two of the remaining training samples. Such rules
possibly over-fit the data and usually do not have generaliza-
tion capabilities. The validation set option is not appropriate
for small datasets because we have to divide the total data
samples into training, validation, and test sets. The third
and fourth options both necessitate a user-defined threshold
parameter. The correct specification of such parameters is
usually problematic because they are dependent on the dataset.

All the options, except the first one, result in residual
training samples uncovered by any of the discovered rules.
Usually, the information contained in these samples is partially
harnessed by adding a default rule at the bottom of the rule
set according to class label in majority among them.

All AntMiners employ early stopping of the rule discovery
process. AntMiner [14] uses a user-defined threshold called
“Max uncovered samples.” The algorithm checks whether
the uncovered training samples are still above the value for
this threshold. If that is the case, a new iteration of the WHILE
loop starts for the discovery of the next rule. If not, the rule dis-
covery process is terminated. AntMiner+ [18] uses the valida-
tion set technique for large datasets (greater than 250 samples)
and a threshold of 1% remaining samples for small datasets.

We recommend the following approach, taking into account
the fact that the validation set option is not feasible for small-
and medium-sized datasets, and also that we need the default
rule to represent the majority class whose rules we do not
discover. We continue to discover rules till the training set
is completely empty except for the samples belonging to the
majority class. In this way, we do not need any user-defined
parameter for stopping the discovery of rules. Furthermore,
there is no information lost due to the nonhomogeneity of
residual samples.

2) Default Rule: After the completion of rule discovery
process, a default rule may be added at the bottom of the
rule set. The default rule is without any conditions and has
a consequent part only. This default rule accounts for those
test cases which are not covered by any of the discovered
rules.

Since we do not discover rules for samples of the majority
class label, we add a default rule with the class label of
majority class in the training set samples.

The default rule is used by all AntMiners. Since AntMiner
[14] uses a threshold for terminating the rule discovery pro-
cess, there are residual uncovered training samples in the
training set. The majority class label of these remaining
uncovered samples is assigned as the class label for the default
rule. In AntMiner+ [18], the default rule class label is assigned
on the basis of majority class of the complete set of training
samples. AntMiner2 and AntMiner3 also assign default rule
class label on the basis of majority class of the complete set
of training samples. However, the rule discovery process of
AntMiner2 and AntMiner3 includes discovery of rules for the
majority class, whereas AntMiner+ does not discover them.

3) Use of Discovered Rule Set for Classifying Unseen
Samples: After the addition of default rule, the rule set is ready
to be used for classifying unseen samples. A new test sample,
unseen during training, is classified by checking the rules
in order of their discovery. The first rule whose antecedents
match the test sample is fired and the class predicted by
the rule’s consequent is assigned to the sample. If none of
the discovered rules are fired then the final default rule gets
activated and fired.

H. Comprehensibility of the Rule Set

One issue regarding comprehensibility of the rule set discov-
ered by AntMiner-CC is the absence of rules for the majority
class. A second, and bigger, issue is that the discovered rule
set is an ordered one, and each rule has to be understood in
the context of the rules preceding it. For rectifying these two
problems, we propose two variants of AntMiner-CC.

1) Rules for Majority Class: If we wish to discover rules
for the majority class also, then the algorithm of Fig. 2 can be
modified to allow the majority class to compete with other
classes while selecting a class before the execution of the
REPEAT-UNTIL loop. Apart from this change, the rest of the
algorithm remains the same. The default class at the bottom of
the rule set is still according to the class label of the majority
of the samples in the training set. We call this algorithm
MAntMiner-CC.

2) Unordered Rule Set: An AntMiner has been proposed in
[19] for discovering unordered set of rules. For an unordered
rule set there is no need to apply the discovered rules in order
and therefore they can be interpreted independently of each
other.

AntMiner-CC has been modified to obtain an unordered rule
set. A general description of the resulting algorithm, called
UAntMiner–CC, is shown in Fig. 6. The FOR loop iterates
once for each class value in the class attribute domain. For all
class values, it starts with the full training set. This ensures
availability of a maximal number of negative examples to the

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 697

algorithm. The samples of the selected class are considered
as positive samples and all other samples serve as negative
samples. The algorithm creates a best rule that covers a subset
of the training data, adds the best rule in the discovered
rules list and removes the training samples that are correctly
classified by this rule. This process continues until the training
set is empty of samples belonging to the class value being
considered. The training set is then again reinstated for another
class value.

The algorithm terminates when the FOR loop has iterated
over all the possible class values. The output of the algorithm
is an unordered set of rules. A default rule is added at the
bottom of the rule set. It has no conditions and has only
a consequent. The consequent is the class label in majority
among training set samples. This set can then be used to
classify unseen data.

Since the rules can be applied in any order, several rules
may get activated for a given test sample and, in such cases, a
conflict resolution strategy has to be used. In our experiments,
we use the conflict resolution strategy that fires the rule with
the highest confidence. In case none of the discovered rules is
activated, the default rule is fired.

UAntMiner-CC has another advantage. Since discovery of
rules for a class is independent of the other classes, we can
parallelize the rule discovery process.

IV. Experiments and Analysis

In this section, we describe our experimental setup and
report the performance of the proposed algorithms. We also
present our experiments for validating some of the design
choices of these algorithms.

A. Comparisons on Basis of Predictive Accuracy

1) Datasets: In our experiments, we use a suite of 26
datasets obtained from the UCI repository [28] to report the
performance of the proposed algorithms and their comparison
with other algorithms. The main characteristics of the suite
of datasets are summarized in Table I. These datasets are
commonly used by researchers and the suite has reasonable
variety in terms of number of attributes, number of samples,
and number of classes.

The proposed algorithms work with categorical attributes
and continuous attributes need to be discretized in a pre-
processing step. We use unsupervised discretization filter of
Weka-3.4 machine learning tool [12] for discretizing contin-
uous attributes in the datasets. This filter first computes the
intervals of continuous attributes and then discretizes them on
the basis of these intervals.

2) Performance Metric and Choice of Parameters: There
are many performance metrics that can be used when eval-
uating classification algorithms. Many of them are based on
the number of correct and incorrect class label predictions
by the resulting classifier. For classification rule discovery
algorithms, we can also use number of discovered rules and
number of conditions per rule as an indirect measure of
the classifier comprehensibility (the smaller, the better). Rule
interestingness measures can also be used for comparison on

TABLE I

Suite of Datasets Used in Our Experiments

Dataset Attributes Samples Classes
Balance-scale 4 625 3
Breast Cancer–Wisconsin (BC-W) 9 683 2
Car 6 1728 4
Congress House Votes 17 435 2
Credit (Australia) 15 690 2
Credit (Germany) 19 1000 2
Dermatology 33 366 6
Ecoli 7 336 8
Glass 9 214 7
Haberman 3 307 2
Hayes Roth 6 132 3
Heart 13 270 2
Hepatitis 19 155 2
Image Segmentation 19 210 7
Ionosphere 34 351 2
Iris 4 150 3
Mammographic—Mass 5 961 2
Pima Indian Diabetes 8 768 2
SPECT (Heart) 22 267 2
Teacher Assistant Evaluation (TAE) 6 151 3
Tic-tac-toe 9 958 2
Transfusion 4 748 2
Vehicle 18 282 4
WDBC 31 569 2
Wine 13 178 3
Zoo 16 282 7

the basis of novelty of discovered rules. In this paper, we
use predictive accuracy as our main performance metric. It is
defined as the percentage of testing samples correctly classified
by the classifier. This is a popular performance metric for
general comparison between classification algorithms and has
been used in all the previous AntMiner research.

The experiments are performed using a tenfold cross-
validation procedure. A dataset is divided into 10 equally
sized, mutually exclusive subsets. Each of the subset is used
once for testing while the other nine are used for training. The
results of the 10 runs are then averaged and this average is
reported as the final result. Standard deviation is also reported
along with the averages.

AntMiner-CC has the following user-defined parameters:

1) number of ants (this is the short form for maximum size
of a batch of 1-ant colonies);

2) number of rules converged (for early termination of
REPEAT-UNTIL loop);

3) powers of pheromone and heuristic values (α, β) used
in (7);

4) pheromone evaporation rate used in (25).

According to our experiments, described later (Table VI,
Section IV-B), the number of 1000 ants is an adequate value
because it is used in conjunction with the early termination
of the REPEAT-UNTIL loop if rule convergence is achieved.
The parameter “number of rules converged” is an indirect
indication of pheromone saturation and does not seem to be a
sensitive parameter as long as it is not a very small number.
We use the value of 10 for this parameter; a number which has

698 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

Fig. 6. UAntMiner-CC algorithm.

TABLE II

Parameters Used in Experiments

Parameter Value
Number of ants 1000
Evaporation rate 0.10
No. of rules converged 10
Alpha 1
Beta 1

also been used by the previous AntMiner versions reported in
[14] and [18].

The relationship between α, β, and ρ is a complex one and
needs to be determined experimentally. For a given dataset,
accuracy results can be obtained using different combinations
of these three parameters, and the best ones can be retained. In
the experiments reported in this paper, we make no efforts at
such an optimization and arbitrarily use α = β = 1 and ρ = 0.1
for all datasets. The complete list of parametric values used
in our experiments is shown in Table II.

3) Predictive Accuracy Results: We compare the re-
sults of our algorithm with those for AntMiner, AntMiner2,
AntMiner3, AntMiner+, C4.5 [29], [30], Ripper, AdaBoost, k-
nearest neighbor, logistic regression, naive Bayes, and support
vector machines (SVM) [31]. AntMiner-CC and its variants
have been implemented using C-Sharp language. AntMiner,
AntMiner2, and AntMiner3 algorithms have been imple-

mented in MATLAB 7.0. AntMiner is also available from
[32]. For AntMiner+, we have used the software available
from [33]. For the rest of the algorithms we use the Weka
machine learning tool [12]. The values of two parameters,
maximum uncovered cases and minimum cases per rule, used
in AntMiner, AntMiner2, and AntMiner3, are both set as 10
[14]–[17]. The predictive accuracies of the compared algo-
rithms are shown in Table III(a)–(c). Tenfold cross-validation
is used to obtain the results.

The results indicate that AntMiner-CC and its variants
achieve higher accuracy rate than the compared algorithms
for most of the datasets. In order to analyze whether the
performance of AntMiner-CC is significantly better than the
others we have employed the Friedman test. The Friedman
test is a nonparametric statistical test and is chosen because it
does not make any assumptions about the distribution of the
underlying data and is a suitable test for comparing a set of
classifiers over multiple data sets [34], [35].

Table IV presents the comparisons of the best algorithm (the
algorithm with the best average rank, considered as control
algorithm: AntMiner-CC, in our case) with the remaining
algorithms according to the Friedman test in terms of predica-
tive accuracy values for all the datasets. For each algorithm,
the average rank (the lower the average rank the better the
algorithm’s performance), the p-value (when the average rank
is compared to the average rank of the algorithm with the best

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 699

TABLE III (a)

Average Predictive Accuracies Obtained Using Tenfold Cross-Validation for the Algorithms Proposed in This Paper

Datasets AntMiner–CC MAntMiner-CC UAntMiner-CC
Balance-scale 91.84 ± 4.55 90.4 ± 5.22 90.57 ± 4.55
BC-W 97.71 ± 1.80 96.43 ± 1.55 96.57 ± 1.93
Car 93.06 ± 1.64 97.74 ± 1.11 94.56 ± 1.61
Congress House Votes 95.65 ± 3.45 95.89 ± 4.65 96.8 ± 2.88
Credit (Aus) 90.43 ± 2.47 85.51 ± 3.13 89.28 ± 3.70
Credit (Ger) 86.59 ± 3.26 72.18 ± 5.28 73.47 ± 9.17
Dermatology 94.26 ± 3.98 93.17 ± 3.19 88.24 ± 8.57
Ecolli 86.58 ± 5.53 87.78 ± 6.93 77.59 ± 8.60
Glass 72.45 ± 11.38 71.56 ± 6.39 65.06 ± 10.44
Haberman 79.53 ± 6.86 82.76 ± 9.61 82.44 ± 9.36
Hayes Roth 88.68 ± 7.37 85 ± 12.02 85.6 ± 12.17
Heart 90.74 ± 6.10 84.81 ± 4.43 85.19 ± 7.81
Hepatitis 94.21 ± 4.78 88.38 ± 5.79 87.17 ± 10.28
Image Segmentation 89.52 ± 6.67 85.71 ± 4.49 72.86 ± 10.31
Ionosphere 94 ± 3.13 85.14 ± 6.29 90.29 ± 8.85
Iris 98.67 ± 2.81 98 ± 3.23 91.33 ± 5.50
Mammographic—Mass 68.27 ± 5.15 76.48 ± 4.74 83.66 ± 3.76
Pima Indian Diabetes 87.9 ± 2.88 80.76 ± 7.15 82.31 ± 6.67
SPECT (Heart) 84.99 ± 8.16 80.94 ± 8.22 86.81 ± 7.37
TAE 84.75 ± 13.38 78.17 ± 15.37 79.46 ± 11.10
Tic-tac-toe 98.22 ± 1.83 97.08 ± 2.69 99.27 ± 0.85
Transfusion 47.66 ± 7.30 78.91 ± 5.34 79.57 ± 5.28
Vehicle 82.34 ± 7.56 82.29 ± 9.27 79.45 ± 5.19
WDBC 95.61 ± 2.06 91.74 ± 5.50 90.87 ± 5.79
Wine 98.86 ± 2.40 98.3 ± 2.75 96.6 ± 4.81
Zoo 95.09 ± 5.19 95.09 ± 5.19 90.09 ± 9.42

The highest accuracy for a given dataset is shown in bold.

TABLE III (b)

Average Predictive Accuracies Obtained Using Tenfold Cross-Validation for Algorithms That

Discover Comprehensible Rule Sets

Datasets AntMiner AntMiner2 AntMiner3 AntMiner+ C4.5 Ripper
Balance-scale 75.32 ± 8.86 72.78 ± 9.23 75.06 ± 6.91 35.88 ± 15.00 83.02 ± 3.24 80.93 ± 3.35
BC-W 94.64 ± 2.74 92.70 ± 2.82 93.56 ± 3.45 49.1 ± 20.72 94.84 ± 2.62 95.57 ± 2.17
Car 82.38 ± 2.42 81.89 ± 2.63 78.82 ± 3.76 56.93 ± 19.90 96.0 ± 2.13 89.17 ± 2.52
Congress House Votes 94.54± 2.27 95.76 ± 2.43 94.72 ± 3.42 79.25 ± 10.89 95.31 ± 2.57 95.66 ± 2.75
Credit (Aus) 86.09 ± 4.69 84.20 ± 4.55 86.67 ± 5.46 46.52 ± 17.04 81.99 ± 7.78 86.07 ± 2.27
Credit (Ger) 71.62 ± 2.71 73.16 ± 5.21 72.07 ± 4.32 41.13 ± 14.43 70.73 ± 6.71 70.56 ± 5.96
Dermatology 58.72 ± 7.36 59.18 ± 14.91 67.47 ± 9.57 28.27 ± 20.94 95.07 ± 2.80 93.96 ± 3.63
Ecolli 47.52 ± 11.32 43.09 ± 9.76 44.61 ± 10.32 21.16 ± 10.26 82.99 ± 7.72 79.18 ± 2.22
Glass 53.33 ± 4.38 56.15 ± 10.32 46.36 ± 10.96 15.28 ± 11.47 68.90 ± 8.98 70.48 ± 8.19
Haberman 71.99 ± 7.57 73.94 ± 5.33 74.72 ± 4.62 66.08 ± 12.99 73.88 ± 4.66 72.47 ± 6.74
Hayes Roth 75.05 ± 10.62 70.88 ± 15.47 85.49 ± 7.76 40.93 ± 12.14 80.93 ± 8.24 78.57 ± 14.47
Heart 80.74 ± 4.94 78.15 ± 10.25 87.78 ± 6.77 54.81 ± 16.82 78.43 ± 6.26 73.59 ± 9.57
Hepatitis 80.67 ± 8.67 81.46 ± 11.89 80.17 ± 10.23 72.38 ± 13.01 68.25 ± 11.63 73.46 ± 8.21
Image Segmentation 70.48 ± 10.95 72.33 ± 9.34 72.98 ± 9.54 23.33 ± 12.18 88.82 ± 8.04 83.74 ± 7.72
Ionosphere 68.0 ± 11.09 66.0 ± 7.31 64.57 ± 8.85 62.29 ± 15.58 89.98 ± 5.25 90.29 ± 6.90
Iris 95.33 ± 4.50 94.67 ± 6.89 96.0 ± 4.66 56 ± 24.59 94.0 ± 6.63 94.76 ± 5.26
Mammographic—Mass 78.25 ± 3.48 79.40 ± 3.64 82.33 ± 3.56 64.82 ± 13.44 82.44 ± 4.56 83.52 ± 4.52
Pima Indian Diabetes 74.63 ± 6.65 72.56 ± 4.46 70.88 ± 5.05 65.93 ± 3.59 72.11 ± 6.96 77.96 ± 7.47
SPECT (Heart) 75.38 ± 5.50 83.56 ± 8.34 78.68 ± 5.17 63.8 ± 26.35 80.03 ± 51.85 79.29 ± 19.43
TAE 50.67 ± 6.11 53.58 ± 7.33 53.04 ± 10.67 32.29 ± 11.01 51.33± 9.45 44.67 ± 10.35
Tic-tac-toe 74.95 ± 4.26 72.54 ± 5.98 72.02 ± 4.50 51.46 ± 14.60 94.03 ± 2.44 97.57 ± 1.44
Transfusion 77.30 ± 6.37 79.44 ± 3.64 77.56± 3.31 53.43 ± 28.77 77.71 ± 12.32 76.11 ± 14.54
Vehicle 56.79 ± 9.56 53.55 ± 11.07 56.0 ± 10.24 25.11 ± 11.45 65.86 ± 6.76 66.52 ± 11.86
WDBC 85.26± 4.22 86.66 ± 4.56 88.05 ± 5.40 66.09 ± 14.59 93.31 ± 2.72 94.03 ± 3.72
Wine 90.0 ± 9.22 90.49 ± 10.13 94.44 ± 5.24 49.48 ± 19.31 96.60 ± 3.93 94.90 ± 5.54
Zoo 81.36 ± 11.30 79.36 ± 15.51 75.27 ± 11.69 32.64 ± 16.23 94.0 ± 9.17 90.0 ± 11.55

700 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

TABLE III (c)

Average Predictive Accuracies Obtained Using Tenfold Cross-Validation for the Algorithms

That Do Not Produce Rule Set Models

Datasets AdaBoost kNN Logit NaiveBayes SVM
Balance-scale 72.33 ± 2.39 89.26 ± 1.59 88.30 ± 2.69 91.04 ± 2.55 87.98 ± 1.80
BC-W 94.83 ± 1.67 96.42 ± 1.54 96.56 ± 1.21 96.13 ± 1.19 96.70 ± 0.69
Car 69.79 ± 0.48 93.75 ± 1.87 93.22 ± 2.10 86.04 ± 2.32 93.74 ± 2.65
Congress House Votes 96.08 ± 3.27 92.28 ± 3.86 95.14 ± 3.0 90.54 ± 3.59 96.09 ± 3.06
Credit (Aus) 85.76 ± 3.40 82.44 ± 7.31 85.77 ± 4.75 79.37 ± 4.57 85.17 ± 2.06
Credit (Ger) 76.12 ± 2.01 74.43 ± 7.87 75.82 ± 4.24 74.87 ± 5.96 75.11 ± 3.63
Dermatology 96.45 ± 2.88 95.62 ± 3.22 96.71 ± 2.83 96.98 ± 2.75 97.54 ± 2.99
Ecolli 81.53 ± 7.25 80.86 ± 6.45 86.31 ± 5.38 85.66 ± 2.83 82.69 ± 5.04
Glass 44.78 ± 1.89 70.95 ± 5.83 63.65 ± 6.72 51.69 ± 8.31 57.70 ± 8.10
Haberman 69.76 ± 7.21 70.11 ± 11.95 73.08 ± 3.99 74.05 ± 4.76 73.44 ± 0.97
Hayes Roth 83.30 ± 10.46 70.93 ± 9.59 53.52 ± 11.18 77.20 ± 11.08 58.13 ± 15.33
Heart 82.33 ± 6.08 80.71 ± 6.17 77.0 ± 5.05 85.19 ± 8.27 80.32 ± 6.25
Hepatitis 74.71 ± 15.02 67.62 ± 9.06 64.25 ± 8.87 74.79 ± 6.90 75.37 ± 8.62
Image Segmentation 88.02 ± 6.15 86.57 ± 7.99 85.71 ± 9.28 78.48 ± 5.29 88.52 ± 5.70
Ionosphere 90.0 ± 3.37 86.0 ± 6.38 86.57 ± 7.63 82.75 ± 4.94 87.14 ± 5.75
Iris 95.33 ± 3.22 95.33 ± 4.50 97.33 ± 5.62 95.33 ± 3.22 96.67 ± 3.52
Mammographic—Mass 81.88 ± 4.54 78.07 ± 5.99 82.92 ± 3.91 82.69 ± 3.82 80.32 ± 4.37
Pima Indian Diabetes 74.33 ± 6.49 69.75 ± 7.13 77.98 ± 5.91 75.49 ± 4.50 77.06 ± 4.09
SPECT (Heart) 84.52 ± 15.29 81.20 ± 16.77 81.94 ± 15.92 76.87 ± 12.72 87.20 ± 11.48
TAE 41.34 ± 6.13 64.67 ± 7.73 53.33 ± 11.33 57.33 ± 10.91 58.67 ± 10.98
Tic-tac-toe 98.23 ± 0.50 98.75 ± 0.66 98.23 ± 0.50 70.09 ± 5.78 98.33 ± 0.53
Transfusion 75.84 ± 16.0 71.01 ± 14.98 77.17 ± 14.49 72.37 ± 17.22 76.24 ± 15.33
Vehicle 69.36 ± 8.96 67.62 ± 5.63 77.18 ± 9.35 42.79 ± 2.54 66.57 ± 7.40
WDBC 94.71 ± 2.89 95.06 ± 2.88 95.24 ± 2.07 93.48 ± 4.49 97.72 ± 1.45
Wine 92.01 ± 4.93 96.08 ± 4.59 96.60 ± 4.03 98.30 ± 2.74 98.30 ± 2.74
Zoo 91.0 ± 9.94 97.0 ± 6.75 97.0 ± 4.83 97.0 ± 6.75 95.0 ± 7.07

rank, i.e., control algorithm) and Holm critical value obtained
by Holm’s post-hoc test are reported. If the p-value of an
algorithm is lower than the critical value (at 5% significance
level), the values in a row are shown in bold. This indicates
that there is a significant difference between the average ranks
of the compared algorithm and the control algorithm, and
that the control algorithm has significantly outperformed the
counterpart algorithm in that row.

According to Table IV, AntMiner-CC is the best performing
algorithm in terms of predictive accuracy with the lowest
average rank of 3.2115. The two variants of AntMiner-CC and
SVM can be placed in the same group as AntMiner-CC and
these three algorithms can be considered to perform as well
as AntMiner-CC. However, we note that AntMiner-CC and its
variants develop comprehensible classification models which
can be validated, understood, and verified by the end users, as
compared to the black box classification model generated by
SVM.

Martens et al. [18] reported results for AntMiner+ that
have used datasets subjected to chi-square attribute selection.
This is a preprocessing step and not a part of the AntMiner+
algorithm. In order to make fair comparison between all the
algorithms, we have not used chi-square attribute selection
for AntMiner+ in our experiment. We have also not used
validation set technique to stop the classifier learning process,
as is done in [18], for the same reason.

The results of AntMiner-CC are better than those of
MAntMiner-CC. The reason for this reduction in accuracy is
that in an ordered rule set with more rules (as is the case

for MAntMiner-CC), there are more chances of a sample
being falsely covered by a rule placed higher in the hierarchy.
Furthermore, the reason for UAntMiner-CC having higher
number of incorrect classifications is more rules in the clas-
sifier combined with the need of using a conflict resolution
strategy. However, while comparing these three variants, the
advantage of better comprehensibility has also to be taken into
consideration.

B. Roles of Pheromones and the Heuristic Function

In this section, we report the results of our investigation
of the respective roles played by the pheromone values and
the heuristic function. For this purpose, we conducted two
experiments. In the first experiment, AntMiner-CC and its
variants are modified such that the ants perform a search in
the absence of the heuristic function and are guided only by
pheromone values. In the second experiment, AntMiner-CC
and its variants are modified such that pheromone values are
not used and only heuristic function is used.

The results of these experiments are shown in Table V
for AntMiner-CC. We observe that accuracy of AntMiner-CC
is generally better, even though not prominently, when both
pheromone and heuristic values are used together as compared
to the cases when only one of them is being used. However,
it is the speed of convergence, manifested by the number
of ants used, which gives us an insight into the benefit of
using both pheromone and heuristic values. AntMiner-CC uses
considerably fewer ants than the user-defined number of 1000.
This is due to the early exit from the REPEAT-UNTIL loop

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 701

TABLE IV

Summary of the Comparisons of the Algorithms Based on Predictive Accuracy, According to the Nonparametric Friedman Test

With the Holm’s Post-Hoc Test on 5% Significance Level

Comparison basis Algorithm Avg. rank p Holm
Predictive accuracy AntMiner-CC (control) 3.2115 – –

UAntMiner-CC 4.5769 0.2392 0.0500
MAntMiner-CC 4.9231 0.1401 0.0250

SVM 5.4231 0.0566 0.0167
Logit 6.1154 0.0123 0.0125
Knn 7.4038 3.0230E–4 0.0100

NaiveBayes 7.5000 2.188E–4 0.0083
AdaBoost 7.5769 1.6823E–4 0.0071

C4.5 7.6538 1.2877E–4 0.0063
Ripper 8.0192 3.4173E–5 0.0056

AntMiner3 9.0769 4.2965E–7 0.0050
AntMiner2 9.6923 2.3273E–8 0.0045
AntMiner 9.9808 5.4002E–9 0.0042

AntMiner+ 13.8462 4.9141E–20 0.0038

TABLE V

Average Predictive Accuracies and Number of Ants for AntMiner-CC and Its Modified Forms, Using Tenfold Cross-Validation

Datasets Max.
Ants

AntMiner-CC Pheromone Only (No Heuristic) Heuristic Only (No Pheromone)

Accuracy Ants Used Pr. Eqs Accuracy Ants Used Pr. Eqs Accuracy Ants Used Pr. Eqs
Balance-scale 1000 91.84 ± 1.44 155.48 ± 21.43 2865.23 ± 57.75 90.24 ± 1.47 313.3 ± 17.05 3227.94 ± 52.34 91.03 ± 1.46 991.27 ± 1.65 2789.79 ± 49.59
BC-W 1000 97.71 ± 0.57 77.54 ± 2.41 1238.14 ± 39.52 97.57 ± 0.57 262.19 ± 5.75 1969.88 ± 49.19 97.71 ± 0.57 1000 ± 0 1129.19 ± 47.37
Car 1000 93.06 ± 0.52 240.34 ± 12.99 7088.67 ± 91.96 91.78 ± 0.72 547.03 ± 2.4 6875.35 ± 97.72 92.59 ± 0.65 998.33 ± 0.9 6498.83 ± 85.44
Cong. H. Votes 1000 95.65 ± 1.09 254.27 ± 42.4 1222.07 ± 90.92 95.19 ± 1.04 623.88 ± 32.31 737.09 ± 81.23 95.41 ± 0.9 880.97 ± 21.68 1121.5 ± 67.48
Credit (Aus) 1000 90.43 ± 0.78 306.77 ± 20.62 5624.62 ± 347.55 81.01 ± 2 580.84 ± 10.28 3545.54 ± 621.03 89.71 ± 1.25 950.27 ± 3.5 3677.23 ± 311.11
Credit (Ger) 1000 86.59 ± 1.03 404.43 ± 8.3 22079.47 ± 309.8 83.18 ± 0.99 748.72 ± 16.85 19454.78 ± 413.64 86.48 ± 0.84 1000 ± 0 16476.82 ± 227.91
Dermatology 1000 94.26 ± 1.26 136.72 ± 6.15 3476.24 ± 224.8 95.38 ± 1.07 447.1 ± 11.47 6087.29 ± 120.43 94.23 ± 1.2 1000 ± 0 3107.54 ± 127.76
Ecolli 1000 86.58 ± 1.75 91.46 ± 8.86 2988.62 ± 110.05 85.65 ± 2.83 257.6 ± 4.07 4584.21 ± 113.68 86.56 ± 1.66 963.99 ± 3.6 2505.26 ± 60.98
Glass 1000 72.45 ± 3.6 104.77 ± 6.27 2325.92 ± 39.2 71.9 ± 2.19 310.48 ± 9.37 3860.94 ± 96.65 77.55 ± 2.64 898.83 ± 7.47 1934.5 ± 42.42
Haberman 1000 79.53 ± 2.17 186.46 ± 18.39 1481.29 ± 36.31 75.91 ± 2.46 341.45 ± 9.99 2471.12 ± 56.84 79.2 ± 2.23 960.6 ± 2.25 1405.82 ± 36.17
Hayes Roth 1000 88.68 ± 2.33 147.61 ± 22.02 540.83 ± 19.69 84.07 ± 3.53 228.05 ± 13.45 779.64 ± 25.17 85.6 ± 2.91 907.54 ± 12.32 526.11 ± 12.99
Heart 1000 90.74 ± 1.93 118.43 ± 11.89 1824.32 ± 101.91 88.89 ± 2.7 414.58 ± 14.8 2033.38 ± 149.36 91.11 ± 1.93 1000 ± 0 1480.4 ± 32.85
Hepatitis 1000 94.21 ± 1.51 108.08 ± 4.87 1038.6 ± 43.84 90.96 ± 2.44 369.47 ± 15.68 1567.04 ± 74.9 91.67 ± 2.38 987.68 ± 12.33 824.17 ± 28.68
Image Seg. 1000 89.52 ± 2.11 114.41 ± 3.88 3801.66 ± 186.53 87.62 ± 1.27 302.94 ± 4.25 8247.38 ± 322.4 85.71 ± 2.35 1000 ± 0 2974.7 ± 139.34
Ionosphere 1000 94.00 ± 0.99 136.29 ± 4.37 3540.64 ± 93.46 94.86 ± 1.33 704.84 ± 16.53 6909.48 ± 196.04 94.29 ± 0.95 991.41 ± 6.26 3388.63 ± 73.53
Iris 1000 98.67 ± 0.89 35.54 ± 0.59 140.47 ± 7.06 97.33 ± 1.09 107.81 ± 9.9 310.8 ± 12.04 96.67 ± 1.11 978.02 ± 14.65 143.1 ± 8.42
Mammographic—
Mass

1000 68.27 ± 1.63 680.34 ± 23.29 2549.88 ± 74.47 67.22 ± 1.52 539.08 ± 11.49 2277.04 ± 86.09 68.37 ± 1.64 954.76 ± 2.74 2162.84 ± 65.41

Pima Indian D. 1000 87.90 ± 0.91 164.75 ± 10.99 7562.9 ± 103.79 80.11 ± 1.5 481.39 ± 6.96 9435.3 ± 160.86 86.34 ± 1 987.53 ± 2.09 6626.22 ± 65.33
SPECT (Heart) 1000 84.99 ± 2.58 206.18 ± 31.96 4413.39 ± 171.21 85.77 ± 2.47 964.76 ± 7.71 2363.66 ± 88.01 86.52 ± 2.77 633.42 ± 29.66 3854.69 ± 211.68
TAE 1000 84.75 ± 4.23 182.93 ± 49.78 1760.7 ± 82.21 82.75 ± 3.34 220.75 ± 6.17 2536.06 ± 41.46 81.46 ± 4.42 909.5 ± 8.85 1425.88 ± 41.2
Tic-tac-toe 1000 98.22 ± 0.58 286.04 ± 16.76 1163.69 ± 17.15 97.81 ± 0.43 663.01 ± 17.16 1209.55 ± 36.02 98.54 ± 0.39 1000 ± 0 1187.18 ± 16.74
Transfusion 1000 47.66 ± 2.31 310.75 ± 27.04 1435.96 ± 42.45 46.86 ± 2.44 630.07 ± 18.52 1747.69 ± 37.33 47.66 ± 2.31 892.12 ± 10 1385.87 ± 49.7
Vehicle 1000 82.34 ± 2.39 132.47 ± 3.15 6343.39 ± 126.97 80.53 ± 2.8 400.85 ± 7.99 11641.08 ± 122.69 81.92 ± 1.21 1000 ± 0 5092.28 ± 79.45
WDBC 1000 95.61 ± 0.65 163.88 ± 8.26 5506.35 ± 139.96 94.56 ± 1.56 627.8 ± 10.67 14037.87 ± 432.15 95.61 ± 0.91 960.28 ± 8.83 4405.29 ± 46.05
Wine 1000 98.86 ± 0.76 54 ± 2.63 182.09 ± 8.7 100 ± 0 225.08 ± 56.32 323.51 ± 8.69 98.86 ± 0.76 1000 ± 0 207.7 ± 4.3
Zoo 1000 95.09 ± 1.64 69.66 ± 11.35 370.57 ± 16.17 95.09 ± 1.64 212.72 ± 17.49 623.65 ± 19.25 95 ± 1.67 1000 ± 0 454.85 ± 10.97

if the saturation of pheromone values occurs (indicated by
the last 10 ants discovering the same rule). However, we use
a large number, such as 1000, to ensure that sufficient ants
are available for searching before the saturation occurs. When
the same search is performed in the absence of any heuristic
function and is guided only by the pheromone values, the
average number of ants used is much higher as compared to
AntMiner-CC but still much lower than the maximum value
of 1000. The ants utilize their assigned number almost fully
for the case when the search is performed based only on the
heuristic values.

An important aspect of classifier learning is that it should
terminate in reasonable time even for large, real-world
datasets. Our heuristic function (17) combined with class

selection prior to the rule construction reduces the search space
considerably, making AntMiner-CC attractive even for high
dimensional datasets. A heuristic value of zero is assigned
to all those terms that do not occur together for a given
class.

A costly computation in all ACO-based algorithms, which
is done repeatedly, is the calculation of probability equation
(7). The counter of its utilization gives a direct indication of
the amount of search space which an ant has had to consider.
Table V also shows average number of probability calls
in an iteration of the main WHILE loop. The best values
are for AntMiner-CC using heuristic values only. This is
understandable because the exploration of search space is
less in the absence of pheromone values. However, the main

702 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

TABLE VI

Average Predictive Accuracies Obtained Using Tenfold Cross-Validation With Various Design Options

Datasets AM-CC HF: Density Condition of
Symmetric

Pruning All Pruning None
Minimum

Estimation Rule Coverage Generated Rules of the Rules
Balance-scale 91.84 ± 4.55 89.21 ± 2.38 82.01 ± 8.39 89.74 ± 3.11 91.90 ± 4.39 88.89 ± 4.15
BC-W 97.71 ± 1.80 95.43 ± 1.59 94.59 ± 4.25 97.52 ± 2.03 97.71 ± 1.80 97.15 ± 1.89
Congress 95.65 ± 3.45 94.62 ± 2.59 83.88± 8.75 95.57 ± 3.19 95.23 ± 3.56 92.72 ± 4.6
Dermatology 94.26 ± 3.98 93.71 ± 2.24 91.76 ± 5.65 92.71 ± 4.93 95.21 ± 3.45 91.51 ± 3.51
Ecoli 86.58 ± 5.53 82.98 ± 6.71 75.31 ± 7.58 87.86 ± 6.28 86.58 ± 5.53 86.58 ± 5.53
Glass 72.45 ± 11.38 71.08 ± 9.32 64.77 ± 9.88 74.72 ± 6.48 72.45 ± 11.38 77.32 ± 9.15
Haberman 79.53 ± 6.86 77.53 ± 6.09 77.92 ± 8.35 72.49 ± 6.33 80.69 ± 6.37 75.08 ± 7.14
Hayes Roth 88.68 ± 7.37 86.17 ± 7.25 72.98 ± 11.55 86.42 ± 9.77 88.68 ± 7.37 84.93 ± 6.67
Heart 90.74 ± 6.10 87.18 ± 4.94 87.09 ± 4.26 89.32 ± 4.82 90.74 ± 6.10 85.98 ± 6.73
Hepatitis 94.21 ± 4.78 87.33 ± 6.23 86.83 ± 9.12 95.78 ± 5.26 93.59 ± 4.97 87.13 ± 6.29
Ionosphere 94 ± 3.13 90.95 ± 4.59 80.63 ± 9.79 95.89 ± 3.87 94 ± 3.13 94 ± 3.13
Tic-tac-toe 98.22 ± 1.83 97.26 ± 2.59 91.33± 8.15 96.47 ± 2.28 98.22 ± 1.83 97.47 ± 1.77

observation is that the results lend support to the belief of
reduction of search space when our heuristic function is used.

The same trends for accuracies, average ants, and average
probability equation usage are observed for MAntMiner-CC
and UAntMiner-CC. For brevity the results for these algo-
rithms are not shown.

C. Experimental Validation of Algorithmic Design Choices

Several design choices had to be made while developing
AntMiner-CC and its variants. All of these have been dis-
cussed in Section III. We have also validated our choices by
experiments. Some of the experiments are discussed below.
The results are presented in Table VI. For brevity, we present
results of only a representative subset suite of datasets and
only for AntMiner-CC. The observed trends and conclusions
are valid for the larger dataset suite and for the two variants
of AntMiner-CC. All algorithmic parameters used are shown
in Table II.

1) Effectiveness of Correlation Based Heuristic Function:
In this experiment, we replace our heuristic function with
the one used in AntMiner+ (12). The heuristic functions of
AntMiner, AntMiner2, and AntMiner3 (9)–(11) cannot be used
in AntMiner-CC and its variants, because they do not make use
of preselected class label. If we modify these heuristic func-
tions to incorporate the selected class label, then they become
similar to (12). The obtained results (Table VI) indicate that
the better performance of our algorithms is indeed dependent
on our correlation-based heuristic function and degrades if it
is replaced by the density estimation heuristic of (12).

2) Number of Discovered Rules and Terms per Rule:
Apart from predictive accuracy, two other commonly used
performance metrics for rule discovery algorithms are the
number of rules in a discovered rule set and the average
number of terms/rule. If the accuracy of two discovered rule
sets is the same, then we can judge them on the other two
metrics. Shorter rules and rule sets are better as they are
more comprehensible. AntMiner-CC and its variants are at
a disadvantage on these accounts. Sometimes the discovered
rules are several times more than the compared algorithms.
This is due to the absence of minimum sample coverage

restriction on discovered rules in our algorithms. In the worst
case, a constructed rule sometimes covers only one sample.
This disadvantage of our algorithms is compensated by their
better predictive accuracy results.

We have conducted an experiment in which AntMiner-CC
and its variants are used with the incorporation of a restriction
that a rule being created should cover at least a minimum
number of samples. We set this threshold as 10, a value used
in [14] for the same purpose. A term is added to a rule only
if the rule still covers at least 10 samples after its addition.
The predictive accuracies for all the datasets decreased when
this restriction was imposed (Table VI). The reason is that this
condition may prohibit a very effective term from being added,
which would have yielded a high confidence rule. Another
problem with this approach is that it is difficult to determine
a universal correct value for the minimum coverage parameter
which is appropriate for all datasets. It may also be noted that
our heuristic function (17) already encourages the inclusion of
term that has better coverage among the competing terms.

3) Symmetric or Asymmetric Pheromone Matrix: Our
pheromone matrix is asymmetric [Fig. 5(b)]. If an ant chooses
termj after termi, then the pheromone on the edge between
termi and termj is updated but the pheromone value on the
edge between termj and termi is not modified. This is done
to encourage exploration. We have conducted experiments
in which pheromone values on both the edges between two
chosen consecutive terms are updated. This pheromone update
method yields a symmetric pheromone matrix. Experimental
results, shown in Table VI, indicate a decrease in accuracy
when symmetric update is used. The ants have a lesser chance
for exploration and converge quickly to a solution and it may
be an inferior one.

4) Rule Pruning: All Rules, No Rules, or Best Rule?:
In AntMiner-CC and its variants we prune only the best
rule found during an execution of the REPEAT-UNTIL loop
before inserting it in the final rule set. We have done two
experiments in this regard. In the first experiment we prune
all the rules discovered during the REPEAT-UNTIL loop (prior
to pheromone update) and in the second experiment none of
the rules is pruned.

BAIG et al.: CORRELATION AS A HEURISTIC FOR ACCURATE AND COMPREHENSIBLE ANT COLONY OPTIMIZATION BASED CLASSIFIERS 703

Experimental results are shown in Table VI. From these
results we note that rule pruning almost always has a positive
effect on the accuracy. It may be noted that we use the
confidence and coverage as the rule’s quality measure (23) for
pruning purpose. Sometimes this equation sacrifices a term
contributing to the higher confidence of a rule because its
removal increases the coverage of the rule. Due to this reason
we sometimes observe a decrease in accuracy of the classifier
when rule pruning is used. However, these occurrences are
rare. Furthermore, we note that pruning only the best rule and
pruning all the rules give almost similar results. Since pruning
is a costly procedure, we retain pruning of only the best rule
in our algorithm.

V. Conclusion and Future Work

In this paper, we presented and analyzed three variants of a
novel ACO-based classification algorithm. Its main feature is a
new heuristic function that takes into account the relationship
between the previously selected term and the candidate term,
given a preselected class label. The experimental results indi-
cated that it has potential to compete with other contemporary
classification algorithms. The main advantage of our approach
was high accuracy combined with comprehensibility of the
discovered rule set.

As an extension of the main idea, we are currently working
on a new heuristic function that takes into account the rela-
tionship between the last two selected terms and the candidate
term. We also intend to investigate the extension of this idea to
last n selected terms. In this regard, the Apriori algorithm [11]
used in association rule mining for finding frequent item sets
may prove to be helpful. The Apriori property prunes a large
number of candidate combinations if their subset combinations
are not frequent (or do not occur at all). Instead of specifying
a minimum support threshold, we can use the frequency with
which terms occur together as a heuristic guide. Terms that
do not occur together at all, and their superset combinations,
will be automatically pruned from the search space.

Work on the same lines can be done for the problem of
hierarchical multilabel classification [36]. In such problems,
samples are associated with more than one class label at
a time and the class labels are organized in a hierarchical
structure. Our heuristic function would be useful in capturing
the relationships between terms and classes, and the Aprori
property may be applied to reduce the search space.

Another idea worth investigating is that of using domain
knowledge in the proposed algorithm. One simple way to
improve the discovered rule set with the help of domain knowl-
edge is by looking for missing, redundant, and misleading
rules. The second way is to incorporate hard constraints of
the domain knowledge by modifying the search space and soft
constraints by influencing the heuristic values as is done in
[37] for AntMiner+.

Finally, the algorithm can be altered to accommodate mul-
tiobjective rule mining. Alatas and Akin [38] experiment with
the biobjectives of accuracy and comprehensibility in the
framework of a new PSO algorithm. The idea can also be
applied in the context of ACO.

References

[1] A. P. Engelbrecht, Computational Intelligence, An Introduction, 2nd ed.
New York: Wiley, 2007.

[2] A. P. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
New York: Wiley, 2005.

[3] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence. San Mateo,
CA: Morgan Kaufmann/Academic, 2001.

[4] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing
(Natural Computing Series, 2nd ed.). Berlin, Germany: Springer, 2007.

[5] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA:
MIT Press, 2004.

[6] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: Optimization by
a colony of cooperating agents,” IEEE Trans. Syst., Man, Cybern. B,
Cybern., vol. 26, no. 1, pp. 29–41, Feb. 1996.

[7] T. Stutzle and H. H. Hoos, “MAX–MIN ant system,” Future Generation
Comput. Syst., vol. 16, no. 8, pp. 889–914, 2000.

[8] M. Dorigo and L. M. Gambardella, “Ant colony system: A cooperative
learning approach to the travelling salesman problem,” IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[9] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization:
Artificial ants as a computational intelligence technique,” IEEE Comput.
Intell. Mag., vol. 1, no. 4, pp. 28–39, Nov. 2006.

[10] A. Abraham, C. Grosan, and V. Ramos, Swarm Intelligence in Data Min-
ing (Studies in Computational Intelligence, vol. 34). Berlin, Germany:
Springer, 2006.

[11] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd
ed. San Mateo, CA: Morgan Kaufmann, 2006.

[12] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. San Mateo, CA: Morgan Kaufmann, 2005.

[13] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification. New
York: Wiley, 2000.

[14] R. S. Parpinelli, H. S. Lopes, and A. A. Freitas, “Data mining with an
ant colony optimization algorithm,” IEEE Trans. Evol. Comput., vol. 6,
no. 4, pp. 321–332, Aug. 2002.

[15] B. Liu, H. A. Abbass, and B. McKay, “Density-based heuristic for
rule discovery with ant-miner,” in Proc. 6th Australasia-Japan Joint
Workshop Intell. Evol. Syst., 2002, pp. 180–184.

[16] B. Liu, H. A. Abbass, and B. McKay, “Classification rule discovery with
ant colony optimization,” in Proc. IEEE/WIC Int. Conf. Intell. Agent
Technol., Oct. 2003, pp. 83–88.

[17] B. Liu, H. A. Abbass, and B. McKay, “Classification rule discovery with
ant colony optimization,” IEEE Comput. Intell. Bull., vol. 3, no. 1, pp.
31–35, Feb. 2004.

[18] D. Martens, M. de Backer, R. Haesen, J. Vanthienen, M. Snoeck, and
B. Baesens, “Classification with ant colony optimization,” IEEE Trans.
Evol. Comput., vol. 11, no. 5, pp. 651–665, Oct. 2007.

[19] J. Smaldon and A. A. Freitas, “A new version of the ant-miner
algorithm discovering unordered rule sets,” in Proc. GECCO, 2006,
pp. 43–50.

[20] N. Holden and A. A. Freitas, “A hybrid PSO/ACO algorithm for
classification,” in Proc. GECCO Workshop Particle Swarms: The Second
Decade, 2007, pp. 2745–2750.

[21] S. Swaminathan, “Rule induction using ant colony optimization for
mixed variable attributes,” M.Sc. thesis, Texas Tech. Univ., Lubbock,
2006.

[22] F. Otero, A. Freitas, and C. Johnson, “cAnt-Miner: An ant colony
classification algorithm to cope with continuous attributes,” in Proc.
ANTS, LNCS 5217. 2008, pp. 48–59.

[23] A. Chan and A. Freitas, “A new ant colony algorithm for multilabel
classification with applications in bioinformatics,” in Proc. GECCO,
2006, pp. 27–34.

[24] U. Boryczka and J. Kozak, “New algorithms for generation decision
trees: Ant-miner and its modifications,” in Foundations of Computational
Intelligence, vol. 6 (Studies in Computational Intelligences, vol. 206).
Berlin, Germany: Springer, 2009.

[25] D. Martens, B. Baesens, and T. Fawcett, “Editorial survey: Swarm
intelligence for data mining,” Mach. Learning, vol. 82, no. 1, pp. 1–
42, 2011.

[26] A. R. Baig and W. Shahzad, “A correlation based Ant Miner for
classification rule discovery,” Neural Comput. Appl. J., vol. 21, no. 2,
pp. 219–235, Mar. 2012.

[27] W. Shahzad and A. R. Baig, “Compatibility as a heuristic for construc-
tion of rules by artificial ants,” J. Circuits Syst. Comput., vol. 19, no. 1,
pp. 297–306, Feb. 2010.

[28] S. Hettich and S. D. Bay. (1996). The UCI KDD Archive [Online].
Available: http://kdd.ics.uci.edu

704 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 17, NO. 5, OCTOBER 2013

[29] J. R. Quinlan, C4.5: Programs for Machine Learning. San Mateo, CA:
Morgan Kaufmann, 1993.

[30] J. R. Quinlan, “Generating production rules from decision trees,” in
Proc. Int. Joint Conf. Artif. Intell., San Francisco, CA, USA, 1987, pp.
304–307.

[31] V. N. Vapnik, The Nature of Statistical Learning Theory. New York:
Springer-Verlag, 1995.

[32] F. Meyer and R. S. Parpinelli. (2009). GUI Ant-Miner [Online]. Avail-
able: http://sourceforge.net/projects/guiantminer/

[33] D. Martens. (2012). Classification With Ant Colony Optimization [On-
line]. Available: http://www.antminerplus.com/

[34] S. Garcia and F. Herrera, “An extension on statistical comparisons of
classifiers over multiple datasets for all pairwise comparisons,” J. Mach.
Learning Res., vol. 9, pp. 2677–2694, Dec. 2008.

[35] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
J. Mach. Learning Res., vol. 7, pp. 1–30, Jan. 2006.

[36] S. N. Silla and A. Freitas, “A survey of hierarchical classification across
different application domains,” Data Mining Knowledge Discovery, vol.
22, nos. 1–2, pp. 31–72, 2011.

[37] D. Martens, M. de Backer, R. Haesen, B. Baesens, C. Mues, and
J. Vanthienen, “Ant-based approach to the knowledge fusion problem,”
in Proc. ANTS, LNCS 4150. 2006, pp. 84–95.

[38] B. Alatas and E. Akin, “Multiobjective rule mining using a chaotic
particle swarm optimization algorithm,” Knowledge Based Syst., vol.
22, no. 6, pp. 455–460, 2009.

Abdul Rauf Baig (M’07) received the B.E. degree
in electrical engineering from the NED University
of Engineering and Technology, Karachi, Pakistan,
in 1987, the Diplôme de Spécialisation degree in
computer science from Supélec, Rennes, France, in
1996, and the Ph.D. degree in computer science from
the University of Rennes-I, Rennes, France, in 2000.

He was with the National University of Computer
and Emerging Sciences, Islamabad, Pakistan, as a
Faculty Member (Assistant Professor, Associate Pro-
fessor, and then Professor) from 2001 to 2010, and is

currently on leave. Since 2010, he has been a Professor with Imam Muhammad
bin Saud Islamic University, Riyadh, Saudi Arabia. He has more than 90
publications in journals and international conferences. His current research
interests include data mining and evolutionary algorithms.

Dr. Baig is a member of the IEEE Computational Intelligence Society.

Waseem Shahzad received the M.S. and Ph.D. de-
grees in computer science from the National Univer-
sity of Computer and Emerging Sciences, Islamabad,
Pakistan, in 2007 and 2010, respectively.

Since 2010, he has been an Assistant Profes-
sor with the National University of Computer and
Emerging Sciences. His current research interests
include data mining, computational intelligence, ma-
chine learning, theory of computation, and soft com-
puting. He has several publications to his credit.

Salabat Khan received the B.S. degree in computer
science from Virtual University, Lahore, Pakistan, in
2007, and the M.S. degree in computer science from
the National University of Computer and Emerg-
ing Sciences, Islamabad, Pakistan, in 2009. He is
currently pursuing the Ph.D. degree in computer
science with the National University of Computer
and Emerging Sciences, Islamabad.

His current research interests include data mining,
pattern analysis, medical image processing, bio-
informatics, and bio-inspired algorithms.

