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Abstract. This research presents an optimization technique for multiple routes ge-
neration using simulated niche based particle swarm optimization for dynamic online
route planning, optimization of the routes and proved to be an effective technique.
It effectively deals with route planning in dynamic and unknown environments clut-
tered with obstacles and objects. A simulated niche based particle swarm optimiza-
tion (SN-PSO) is proposed using modified particle swarm optimization algorithm
for dealing with online route planning and is tested for randomly generated envi-
ronments, obstacle ratio, grid sizes, and complex environments. The conventional
techniques perform well in simple and less cluttered environments while their per-
formance degrades with large and complex environments. The SN-PSO generates
and optimizes multiple routes in complex and large environments with constraints.
The traditional route optimization techniques focus on good solutions only and do
not exploit the solution space completely. The SN-PSO is proved to be an efficient
technique for providing safe, short, and feasible routes under dynamic constraints.
The efficiency of the SN-PSO is tested in a mine field simulation with different
environment configurations and successfully generates multiple feasible routes.

Keywords: Swarm, particle swarm optimization, swarm intelligence, route plan-
ning
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1 INTRODUCTION

Particle swarm optimization [1] and ant colony optimization [1] are two major tech-
niques in the family of swarm intelligence. In particle swarm optimization (PSO),
a swarm of particles is placed in a hypothetical solution space with multiple con-
straints to satisfy. Each particle represents a solution in the solution space and has
respective position and velocity in the solution space. The particle position and
velocity update by using particle position and velocity updating equations. The
particle size remains constant in a specific run of the system. On the other hand,
each particle keeps track of its own best previous position so far that can be con-
sidered as simple nostalgia. The global best position and velocity of the particle
guides the swarm for attaining optimum position and velocity. PSO is a population
based technique and can be used effectively for route optimization problem. There
are many approaches for solving route planning problem using A* [8], LRTA* [8],
genetic algorithm [8], etc. The route planning problem requires robust heuristic
algorithm to deal with the constraints of the route planning environment. The PSO
is easy to implement and can be easily applied for optimization problems.

The route planning is an important problem in artificial intelligence research
and has been addressed over the years; it is still considered to be a challenging area
and requires efficient and robust technique to solve [3, 4, 5, 6, 41, 42, 43]. This
paper presents simulated particle swarm for route planning. The physical existence
of simulated particle swarm can be conceived in the form of a simulation that runs on
computing devices. To say that they are autonomous computational entities implies
that to some extent they have control over their behavior and can act without the
intervention of other systems. The simulated particle swarm uses the modified PSO
algorithm for finding optimum route between start and the goal. The SN-PSO has
been tested for single route as well as multiple routes optimization and proved to
be a robust technique for combinatorial optimization problems. We have tested
the system for mine field simulation and obtained promising results. The major
contributions are given below:

• Multiple route generation

• Route generation in complex environments

• Multiple peak optimization

• Optimization of the generated routes.

Section 2 describes the problem formulation, Section 3 gives the literature re-
view, Section 4 presents the simulated niche based particle swarm optimization
system, Section 5 presents the experiments and Section 6 presents the statistical
results. Section 7 describes the methodology for route optimization and Section 8
presents the conclusion.
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2 PROBLEM FORMULATION

Route planning and optimization of routes have been considered as NP complete
problem [7]. Non-deterministic polynomial time complete is a complexity class of
problems with two properties, i.e. any given solution to the problem can be verified
quickly and if the problem can be solved in polynomial time then every problem
in NP class can be solved. Such problems are usually tackled by approximation
algorithms [7] and meta-heuristic approach is one of them.

An offline planner generates the complete plan before the task is performed [3].
The traditional offline planners often assume that environment is completely known
and they try to find the plan based on shortest distance criteria. They cannot
handle dynamic environments and are limited to their initial plan. When environ-
ment remains constant throughout the planning process, the route planning is called
static offline route planning. A* [8], RTA* [9, 10, 11, 12, 13] are the algorithms that
belong to this family. The planner is provided with the complete picture of the
environment along with the starting and destination points. The destination point
remains constant throughout the planning process. Static environments are those
which, once discovered completely, do not change with respect to the environment
components. The static environment can be known, partially known [9] or unknown
and requires different approach for each category. On the other hand, an online
planner generates a partial plan during the execution of the task. Online plan-
ners are mostly used for dynamic route planning. When the state space changes
during the planning phase, the route planning is called dynamic online route plan-
ning [13]. Online planning approach is based on the assumption that the agents
would be dealing with dynamic environment, and it would neither be feasible nor
practical to re-plan the complete route. The online planners are mostly heuristic
in nature as the problem instance reveals incrementally and is often prone to slow
response time. They require sophisticated algorithmic approach to find the shortest
route.

The unknown and dynamic environments are most difficult to deal with. There
are a number of constraints to be considered during the planning phase. Obstacle
avoidance and finding the shortest route are the complex tasks to deal with.

3 LITERATURE SURVEY

In addition to the modifications made to the basic PSO algorithm, a variety of PSO
variations have also been developed. These include the sub-swarm based PSO algo-
rithms and PSO with niching capabilities. The PSO variations in which grouping of
particles into sub-swarms has been incorporated are called sub-swarm based PSO.
These sub-swarms can either exist in cooperative or competitive mode [14]. Some
examples of sub-swarm based PSO algorithms include the hybrid particle swarm op-
timizer with breeding and subpopulations by Lovberg et al. [15], Multi-phase PSO
(MPPSO) by Al-Kazemi and Mohan [16], Life-cycle PSO (LCPSO) by Krink and
Lovberg [17], Clustering based PSO with Stereotyping by Kennedy [18], Clustering
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based PSO by Thompson et al. [19], Cooperative Split PSO (CPSO-Sk) by Van den
Bergh and Engelbrecht [20] and Predator-Prey PSO by Silva et al. [21].

Niching algorithms are those which are capable of locating multiple solutions to
a problem. Niches can be defined as partitions of an environment which represent
one solution to a problem. Speciation is the process of finding multiple niches or so-
lutions. Species are the partitions of a population competing within an environment.
They are the group of particles which converge on a single niche [14]. Some examples
of niching algorithms include the Sequential Niching PSO employed by Kassabalidis
et al. [22], PSO with Objective Function Stretching by Parsopoulous et al. [23] and
nbest PSO by Brits et al. [24]. There are some PSO variants which are capable of
finding multiple solutions to multi-modal problems by employing a sub-swarm based
niching approach. These include the NichePSO presented by Brits et al. [25] and
Species based PSO proposed by Parrott and Li [26].

N. C. Sahoo et al. [27] used the particle swarm optimization for finding the
shortest path problem for network. This paper proposed a modified priority-based
encoding incorporating a heuristic operator for reducing the possibility of loop for-
mation in the path construction process for particle representation in PSO. They
conducted experiments using 50–70 nodes network and found optimal paths, and
proved to be better in performance then genetic algorithm.

Y. Hui et al. [29] presented a technique using niche PSO for planning multiple
routes for air vehicles. The planning of multiple routes for air vehicles can be consid-
ered as a multiple-peak function optimization problem and can be solved by using
niche based PSO. Each niche can be considered as a sub-population of PSO and
optimizes single function. This strategy gives multiple routes for air vehicles. The
complexity of the environment, particle size and size of sub-populations have direct
impact on the convergence of niche based PSO. The parameters of PSO need to be
optimized in order to reduce convergence time. They used fixed parameters for the
size particles, number of particle dimensions and iterations. The experiments were
conducted by using 1, 2 and 3 sub-populations and generate maximum of 3 routes,
one from each sub-population.

L. F. Hsieh et al. [30] used PSO to schedule order picking routes in a dis-
tribution center. Order picking consumes 40 % of the operation time in a dis-
tribution center. The order picking requires optimization of storage strategy,
order processing and route planning and it evolves into a multi objective opti-
mization problem. They compared the results with ant system and generated
initial solution by genetic algorithm. They first applied the genetic algorithm to
find the initial solution and later on to help PSO in finding the optimal solu-
tion.

Mingquan et al. [44] used improved PSO algorithm for power distribution net-
work expanding path optimization. They optimize power loss and investment cost
of feeders simultaneously. They improved the parameter inertia weight and discrete
idea is added so that it can easily run out the local optimum and provide high speed
of convergence. Similarly, Chen et al. [45] and Zafar et al. [46] used Particle Swarm
Optimization for dynamic route guidance. They used a simple simulation of network
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to find a shortest route. Instead of finding the best route, they are focusing on real
time route.

4 SIMULATED NICHE BASED PARTICLE SWARM OPTIMIZATION

In single route optimization, the system tries to find a feasible and optimal solution
for an entity to move from a start node to the goal node. In multiple routes opti-
mization, more than one feasible and optimal routes are searched from all possible
areas of the environment. It is a difficult job to find a safe, short, and feasible
route in an environment with obstacles and optimization constraints. This research
has applied particle swarm optimization algorithm for finding single feasible route
and niche based particle swarm optimization algorithm for finding multiple feasi-
ble routes. This paper uses grid based environment representation with different
environment configurations for experimentation and testing.

4.1 Single-Route Optimization

A simple PSO has been used for single route optimization problem. The solution
space consists of particles that can be considered as initial population. Each particle
represents a complete route from the start state to the goal state. The routes are
categorized into feasible and infeasible routes based on the parameters like clearness,
smoothness, distance, and cost. A route list is maintained for generated routes. The
first solution in the route list represents the most feasible route and similarly the
second solution represents the second to most feasible solution in the list. There is
a possibility that we get a lower number of feasible solutions than we select in the
solution count. The route list shows only the feasible solutions.

4.1.1 Simple PSO Algorithm

Let p be the total number of particles in the swarm. The best ever fitness value
of a particle at design coordinates pik is denoted by f i

best and the best ever fitness
value of the overall swarm at coordinates pgk by f g

best. At the initialization time step
k = 0, the particle velocities vi0 are initialized to random values within the limits
0 ≤ v0 ≤ vmax

0 . The vector vmax
0 is calculated as a fraction of the distance between

the upper and lower bounds vmax
0 = ζ(xUB − xLB) with ζ = 0.5.

1. Initialize
Set constants kmax, c1, c2, w0

Randomly initialize particle positions xi0 ∈ D in Rn for i = 1, . . . , p
Randomly initialize particle velocities 0 ≤ vi0 ≤ vmax

0 for i = 1, . . . , p
Set k = 1

2. Optimize
Evaluate f i

k using design space coordinates xik
If f i

k ≤ f i
best then f i

best = f i
k, pi = xik
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If f i
k ≤ f g

best then f g
best = f i

k, pg = xik
If stopping condition is satisfied then go to 3
Update particle velocity vector vik + 1
Update particle position vector xik + 1
Increment i. If i > p then increment k, and set i = 1
Repeat the steps from 2

3. Results and Terminate

4.1.2 Particle Encoding

The particle represents a set of nodes as a path between two points on the map.
Each particle comprises n nodes as shown in Figure 1, where n is user defined. The
first node represents the start point and the last node represents the goal point,
while the intermediate nodes are randomly selected from the map.

node(1) node(2) node(3) node(4) . . . . . . . . . . . . node(n)

Figure 1. Particle encoding

In Figure 2, an example of a particle is shown with (2, 3) as the start node and
(36, 38) as the goal node for the value of n equal to 5. The intermediate nodes
(12, 22), (9, 4) and (22, 23) are randomly generated.

(2, 3) (12, 22) (9, 4) (22, 23) (36, 38)

Figure 2. Random initialization of a particle with (2, 3) as start node and (36, 38) as goal
node

4.1.3 Fitness Function

For the evaluation of a route, the construction of complete path between the nodes
is required. The A* algorithm as the shortest distance algorithm has been used for
the construction of intermediate paths between the nodes. The nodes are generated
randomly between the start point and the goal point and arranged in the same
sequence as generated. After finding intermediate paths between all the nodes,
a complete route is generated that can be evaluated by the fitness function. The
fitness function of a particle p accommodates three optimization goals to minimize
cost and is a linear combination of distance measure, number of obstacles, and
number of mines as shown in Equation (1). Each obstacle and mine is considered
as a blocked cell in the grid.

fitnessf (p) = wd · distance(p) + wo · obstacles(p) + wm ·mines(p), (1)

where the constants wd, wo and wm represent the weights on the total cost of the
path’s length i.e. distance, presence of obstacles and mines, respectively.
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The feasible route is considered as mine-free and obstacle-free, while infeasible
route has mines and obstacles. The feasible route with minimum distance measure
is considered as the global best. A path list is maintained for feasible routes and
can be used for visualization of routes on the map based on user selection. The
best of the best path will always remain on top of the path list. The fitness function
evaluates each particle and assigns a particular value as fitness and divides the result
into two components, i.e. feasible and infeasible routes. The feasible and infeasible
routes are further ranked based on the values of the fitness. The infeasible routes
are those that have at least one mine or at least one obstacle in its path. If there
is an obstacle between two nodes, it will be considered as blocked cell or blocked
cells. The obstacles are counted as the number of blocked cells in the particle and
similarly each mine is evaluated as an individual cell and considered as a blocked
cell.

4.2 Multiple-Route Optimization

For multiple route optimization, a niche based PSO has been used. It produces
sub-swarms and behaves as self-organization of particles. Each sub-swarm acts in-
dependently and generates solutions to find the best solution. There is no exchange
of information between different sub-swarms. Each sub-swarm maintains a niche,
independent of other sub-swarms and acts as a stable swarm. It starts as one main
swarm and gradually generates sub-swarms for multiple solutions. As the particle
converges, a sub-swarm is generated by grouping particles that are close to the po-
tential solution. This group of particles is then removed from the main swarm, and
the process continues within their sub-swarm for the refinement of solution. The
main swarm becomes disintegrated into sub-swarms gradually. When sub-swarms
no longer improve the solutions they represent, it is considered as the convergence
point. The global best position from each sub-swarm is taken as the optimum solu-
tion.

4.2.1 Niche Based PSO Algorithm

Create and initialize nx-dimensional main swarm, Sj

repeat
Train the main swarm, S, for one iteration using the cognition-only model;
Update the fitness of each main swarm particle, S · xi;

for each sub-swarm Sk do
Train sub-swarm particles, Sk ·Xi, using a full PSO model;
Update each particle’s fitness;
Update the swarm radius Sk ·R;

endFor
If possible, merge sub-swarms;
Allow sub-swarms to absorb any particles from the main

swarm that moved into the sub-swarm;
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If possible, create new sub-swarms;
until stopping condition is true;

Return Sk ·′ Y for each sub-swarm Sk as a solution;

4.2.2 Explanation for Niche Based PSO Algorithm

The Niche based PSO [14] was developed to find multiple solutions to general multi-
modal problems. The basic operating principle of Niche based PSO is the self-
organization of particles into independent sub-swarms. Each sub-swarm locates and
maintains a niche. Information exchange is only within the boundaries of a sub-
swarm. No information is exchanged between sub-swarms. This independency
among sub-swarms allows sub-swarms to maintain niches. Each sub-swarm func-
tions as a stable, individual swarm, evolving on its own, independent of individuals
in other swarms. The Niche based PSO starts with one swarm, referred to as the
main swarm, containing all particles. As soon as a particle converges on a poten-
tial solution, a sub-swarm is created by grouping together particles that are in close
proximity to the potential solution. These particles are then removed from the main
swarm, and continue within their sub-swarm to refine and to maintain the solution.

5 EXPERIMENTATION

The experimentation phase has been divided into two phases, i.e. single route opti-
mization and multiple route optimizations. Two different environments have been
used for experimentations, i.e. static environment and dynamic environment. We
used four different size environment configurations, i.e. 20 × 20, 40 × 40, 60 × 60,
and 80× 80 grid maps as shown in Figure 3. Each grid map has different percent-
age of obstacles and mines. The starting and the ending points have been fixed
for static experiments. After loading of the map, we need to set the parameters
for experiment. There is an option for enabling dynamic environment by randomly
changing the goal during online planning phase. We provide the number of such
changing states for each run of the simulation and goal changes randomly during
planning. After loading the map, we need to enter population size, cells count and
other parameters for the experiment.

The first experiment deals with static environment using simple PSO as shown in
Table 1 with a population size of 20. A high obstacle ratio and randomly generated
maps have been used to simulate complex environments. The main parameters for
the simulation are C1 and C2 values that are two constants that effect the weighted
deviation from self-best position and global-best position. The SN-PSO is able to
track the moving target similar to the online planning and takes care of the dynamic
environment as shown in Table 3. During each run, the goal changes randomly and
it behaves like a moving target search. Whenever the goal changes the SN-PSO
is capable of tracking it and again finds the shortest route to the new goal. The
number of generated paths is automatically generated in a drop down menu list.
The niche based PSO has been applied for both static and dynamic environment
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a) b)

c) d)

Figure 3. Grid maps of different sizes, obstacle ratio, and complexity: a) 20×20, b) 40×40,
c) 60× 60, d) 80× 80

and successfully generates feasible routes. A different niche count has been used for
experiments and results have been reported for comparison.

5.1 Parameter Settings for Simple PSO

The typical range is 20–40 particles. We have used a population size of 20 particles.
It is determined by the problem to be optimized. For this problem, we have used
2 dimensions of particles. The range of particles is determined by the problem to
be optimized; different ranges for different dimension of particles can be specified.
We used one range for each dimension of the particle. The maximum change one
particle can take during one iteration can be determined by Vmax. We have tested
different values for Vmax. C1 and C2 are usually equal to 2. The stopping condition
can be the maximum number of iterations the PS (Particle Swarm) executes and/or
the maximum fitness achieved. This research used maximum number of iterations
as the stopping condition.
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5.2 Parameter Settings for Niche Based PSO Algorithm

If the population size is 20 and niche count is 4, then we have four sub-swarms
each with a population of 5 particles. Each sub-swarm independently produces
an optimized route; so for a population size of 20 with niche count 4, we can have
4 optimized routes. The population is initialized randomly with the selection of
simple PSO as well as niche based PSO. The heuristic function used for static as
well as dynamic environment is Manhattan distance [39] and Euclidean distance [39].
Finding the solution in dynamic environment is difficult when multiple constraints
are enforced. The SN-PSO has been applied for dynamic environment in the same
way as moving target search (MTS) [40, 41]. The simulated niche based particle
swarm optimization is capable of locating the moving target by using modified PSO.
Again swarms and sub-swarm have been used for handling of moving targets. After
loading and preparation of the map, an option is selected for incorporating moving
target. During the execution of the task, the goal changes and SNPSO reconfigures
the planning phase for the new goal state. SN-PSO has been tested for different
map sizes and configurations.

6 RESULTS

The experiments have been conducted separately for static and dynamic goal en-
vironment. Similarly, the experiments for single route optimization and multiple
route optimizations are reported separately. The simple PSO has been used for
static route planning and compared with classical optimization techniques along
with SN-PSO as shown in Table 1. The performance of SN-PSO remains consistent
with the increase in map size. The optimum values require an intermediate value of
number of niches. Each experiment has been conducted 30 times and the average
value for each 30 runs is reported. The maps are generated randomly with different
number of mines, obstacle ratio and complexity. The red color cell symbolizes the
mine, blue color cell represents the obstacle and white cell is the empty cell that can
be traversed.

The graphs in Figures 4–7 show the cells traversed using simulated niche based
particle swarm system for different particle size and map size. It can be observed
in each of the tables that the route becomes shorter with moderate value of number
of niches. The performance remains consistent throughout the simulation run. The
experimental results for simple to complex environments have shown the scalability
and robustness of the SN-PSO.

The SN-PSO has been applied to dynamic environment for presenting moving
target search as shown in Table 3. After the selection for the number of times to
change the goal state, the SN-PSO runs for tracing the first goal. After tracing
the first goal with the shortest route the goal changes randomly to a new random
configuration. The next goal appears within 10 % of the area of the previous goal.
SN-PSO is capable of acquiring the moving goal with shortest route.
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Normalized Error with A* Algorithm for Dynamic Route Planning
using Simulated Niche Based Particle Swarm Optimization

Map Size Goal SNPSO A* Error

20× 20 (3, 18) 18 17 0.058
(4, 15) 21 21 0.000
(1, 14) 15 14 0.071
(6, 17) 21 20 0.050
(3, 16) 19 18 0.055
(6, 15) 23 21 0.095
(4, 16) 19 17 0.117
(3, 15) 17 17 0.000
(7, 13) 17 15 0.133
(4, 11) 27 24 0.125

40× 40 (1, 15) 15 15 0.000
(2, 17) 18 17 0.058
(4, 15) 20 16 0.250
(1, 12) 14 12 0.166
(2, 9) 9 9 0.000

(1, 14) 15 14 0.071
(4, 13) 15 13 0.153
(2, 10) 12 10 0.200
(1, 9) 9 9 0.000
(2, 7) 7 7 0.000

60× 60 (0, 18) 20 18 0.111
(1, 17) 18 18 0.000
(2, 18) 18 16 0.125
(4, 17) 18 17 0.058
(5, 15) 22 17 0.294
(3, 11) 11 11 0.000
(2, 10) 10 10 0.000
(1, 7) 7 7 0.000
(3, 4) 6 4 0.500
(6, 1) 6 6 0.000

80× 80 (2, 15) 15 15 0.000
(4, 13) 13 13 0.000
(3, 11) 12 11 0.090
(2, 9) 12 9 0.333
(1, 8) 9 8 0.125

(6, 18) 19 18 0.055
(5, 16) 18 17 0.058
(8, 13) 17 13 0.307
(5, 11) 12 11 0.090
(3, 9) 14 9 0.555

Table 4. Normalized error with A* algorithm for dynamic route planning using simulated
niche based particle swarm system
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Figure 4. Route planning using SNPSO for map size 20× 20

The SN-PSO is tested for static environment with multiple route generation
and results are comparable with Manhattan distance as shown in Table 5. The
performance of SN-PSO is better for complex and large size maps.

The SN-PSO has been compared with the methodology given in [29] and results
from NS-PSO are better compared to their method as shown in Table 6 given below.
Niche particle swarm optimization technology performs well for less complex envi-
ronments and gives optimal peaks in each sub-population while SN-PSO has been
tested for complex environments cluttered with obstacles and with different map
sizes. The Niche particle swarm optimization technology was tested in the same size
environment while SN-PSO has been tested for different environments with different
obstacle ratios. The SN-PSO not only provides optimal peaks in each sub-swarm,
it also provides the second best peak as well and gives more options for multiple
routes. The SN-PSO is applied to the same application used in [29] with the same
parameter settings and results have shown better performance as shown in Table 6.
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Figure 5. Route planning using SNPSO for map size 40× 40

7 ROUTE PLANNING OPTIMIZATION

A separate module for route optimization has been implemented to repair the ge-
nerated routes. The concept of v-edge has been used for the optimization of the
route. The v-edge is the combination of diagonal v-shaped cells that are adjacent
to each other but not in a straight line. Their positions can be changed without
extending the distance or number of cells by only swapping their positions and
the route can be repaired. The number of v-edges was counted in each generated
route and fixed by taking the route with same number of cells. It does not reduce
the number of cells traversed; it only increases the smoothness of the route. By
replacing the v-edge with the adjacent cell, the route becomes smooth and straight.
The route optimizer compares all the combinations of the v-edges along the route
and removes the v-edges by replacing with diagonal cells along with keeping same
cells and distance as shown in Figures 8 and 9.
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Figure 6. Route planning using SNPSO for map size 60× 60

The diagonal movement generates v-edges that need to be repaired by using
route optimizer. The smoothness of the routes depends on the number of v-edges
and clearness of the route depends on obstacle avoidance and avoiding mines. The
clearness of the route has been incorporated in the fitness function but the smooth-
ness of the route requires a separate module. The main objective of this module is
to repair the path without altering the original route plans. For this purpose, each
generated route has been compared with the number of cells traversed for each of
the repaired path and the resultant selected route will have the same number of cells
and distance measure.

8 CONCLUSIONS

The simulated niche based particle swarm optimization has been used successfully
for route planning and optimization of routes in static and dynamic environments.
The SN-PSO uses online planning strategy for route generation and effectively deals
with unknown environments. SN-PSO has been tested with simple to complex
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Figure 7. Route planning using SNPSO for map size 80× 80

Figure 8. Shortest path without optimization
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Figure 9. Shortest path with optimization

environments and found to be robust, efficient and scalable. The resultant routes
have been classified by number of v-edges and unwanted curves. The route optimizer
repairs the generated routes while keeping the number of cells and distance the same.
The distances of the resultant routes have been compared with the A* algorithm and
are found to be closer to algorithm A*. The SN-PSO successfully generates multiple
feasible routes and has been implemented for mine detection and route optimization
problem. The consistent experimental results with different size maps have shown
the scalability and robustness of the system for handling dynamic environments. The
SN-PSO can be further tested for other constraint satisfaction and multi-objective
optimization problems in different application areas.
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