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a  b  s  t  r  a  c  t

There  exist  numerous  state  of the art  classification  algorithms  that  are  designed  to  handle  the  data
with  nominal  or  binary  class  labels.  Unfortunately,  less  attention  is given  to the  genre  of  classification
problems  where  the  classes  are  organized  as  a structured  hierarchy;  such  as  protein  function  predic-
tion  (target  area  in this  work),  test  scores,  gene  ontology,  web  page  categorization,  text  categorization
etc.  The  structured  hierarchy  is usually  represented  as  a tree or a directed  acyclic  graph  (DAG) where
there  exist  IS-A  relationship  among  the  class  labels.  Class  labels  at upper  level  of  the  hierarchy  are more
abstract  and easy  to  predict  whereas  class  labels  at deeper  level  are  most  specific  and  challenging  for
correct  prediction.  It is  helpful  to consider  this  class  hierarchy  for designing  a hypothesis  that  can  handle
the  tradeoff  between  prediction  accuracy  and  prediction  specificity.  In this  paper,  a novel  ant  colony
optimization  (ACO)  based  single  path  hierarchical  classification  algorithm  is  proposed  that  incorporates
the  given  class  hierarchy  during  its  learning  phase.  The  algorithm  produces  IF–THEN  ordered  rule list
orrelation based IF–THEN rule list and  thus  offer  comprehensible  classification  model.  Detailed  discussion  on the  architecture  and  design
of  the  proposed  technique  is  provided  which  is  followed  by the  empirical  evaluation  on six  ion-channels
data  sets  (related  to protein  function  prediction)  and  two  publicly  available  data  sets.  The  performance
of  the algorithm  is encouraging  as  compared  to the  existing  methods  based  on the  statistically  significant
Student’s  t-test  (keeping  in  view,  prediction  accuracy  and  specificity)  and  thus  confirm  the  promising
ability  of  the  proposed  technique  for hierarchical  classification  task.
. Introduction

Advanced sensing, capturing and computing technologies
nable us to collect large amount of complex (possibly, raw) data
n many fields of lives but how do we know which portion of data is
mportant and gives us an insight to help our decision making pro-
ess? Moreover, when this problem is faced in the medical domain
nd the decision become a matter of life and death of a patient,
nding the correct set of information become more prominent and
rucial. Data mining techniques can be used to extract implicit, pre-
iously unknown and potentially useful [1] patterns and knowledge
f interests from these vast data stores for varied purposes. One
uch important data mining technique, known as classification, is
uccessfully used in a myriad of applications e.g. decision making,

raud detection, medical diagnosis, credit scoring, customer rela-
ionship management, character recognition, speech recognition,
rotein function prediction etc.
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Numerous classification techniques are proposed throughout
the decades, such as Decision Trees, Neural Networks (NN), k-
Nearest Neighbor’s (k-NN), Logistic Regression and Support Vector
Machine (SVM), etc. [2–4]. Some of these techniques (e.g. NN and
SVM) produce incomprehensible classification models that are usu-
ally opaque to common users, while others e.g., IF–THEN rule
list produced with decision trees, are easily comprehensible to
the experts working in different domains. These techniques are
reported to perform well in various domains and considered com-
putationally efficient (e.g. SVM), robust to noisy data (e.g. decision
trees) and easy to learn (e.g. k-NN). However, most of these clas-
sification techniques are designed to handle the data with binary
or nominal class labels (where class labels are independent). These
classical strategies lack the ability to handle the problems where
the class labels are related and are organized based on a class
hierarchical structure (CHS). The later one is a complex instance
of classification problems, known as hierarchical classification, as
compared to the one level flat classification problems [5]. Hierar-

chical classification has applications in various domains.

This research work focuses on hierarchical protein function
prediction defined under the scheme of Gene Ontology (GO), specif-
ically “molecular function” domain. The GO structure [6] represents

dx.doi.org/10.1016/j.asoc.2013.11.012
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he relationship among the protein functions using directed acyclic
raph (DAG) CHS. It is well known that a protein can perform mul-
iple functions (considered as class labels) and these functions are
sually related (modeled as tree or DAG based IS-A relationship),
akes protein function prediction a suitable and ideal problem

or proposed algorithm. There is a large amount of uncharacter-
zed protein data which is available for analysis that has led to an
ncreased interest in computational methods to support the inves-
igation of the role of proteins in an organism [7,8]. Analyzing the
unctions of proteins in different organisms is crucial to improve
iological knowledge, diagnosis and treatment of diseases. It is not
ossible to conduct the biological experiments for the functional
ssay analysis of every uncharacterized protein due to involvement
f high cost and human based analysis [9]. It therefore raise the need
f the development of computational methods (especially related
o data mining domain, like the one proposed in this paper) to be
sed for this purpose.

In case of hierarchical classification, the class labels to be pre-
icted, are naturally organized as a class hierarchy/taxonomy,
ypically represented as a tree or DAG, see e.g. Fig. 1a and b. The class
abels in the hierarchy are represented as nodes and the relation-
hips between the class labels are shown with undirected edges.
or tree structure, a node can have only one parent whereas no
uch restriction is imposed over DAG CHS. Predicting a single class
abel in the hierarchy, implies that all the ancestor class labels are
lso predicted. In other words, a single class label is a path from root
ode to the predicted child node (explained later) that is consistent
o the IS-A relationship.

Considering the class hierarchy, nodes at the upper levels repre-
ent more general class labels whereas the nodes at the lower levels
epresent the more specific class labels. General class labels are easy
o predict as numerous examples related to them are available (to
he hypothesis learner). On the other hand, classes at the deeper
evels of the hierarchy (i.e. specific classes) are difficult to predict
s less information is available to discriminate among them. There
s always a tradeoff between generality and specificity in hierarchical
lassification. In Fig. 2, a dataset is given with corresponding CHS
or different animals. Given a test example (from this dataset), if
e predict the class label ‘Animal’, the prediction is 100% accurate

ut we get no valuable information about the specific class of ani-
al. Predicting specific class of animal is more important but the

hances of erroneous prediction is high.
In order to identify the types of problems that our proposed

lgorithm can handle, more information is provided in follows.
ased on class label(s) associated with an example, the hierarchical
lassification has further two categories [9]:

1) Hierarchical Single Label (path) Classification: In this type of clas-
sification, an example is associated with only one class label at
any level of the class hierarchy.

2) Hierarchical Multi-label (path) Classification: In this type of clas-
sification, an example can be associated with more than one class
label at any level of the hierarchy (multi-paths in the hierarchy).

The hierarchical classification problems can further be divided
n two categories based on the level (depth) of the predicted class
abel [9,10]: (1) Mandatory Leaf Node Prediction (MLNP), and (2)
ptional Leaf Node Prediction (OLNP) or Non-Mandatory Leaf Node
rediction (NMLNP). Based on MLNP, it is mandatory for a classifier
o predict at least one of the leaf class labels (from CHS) for classify-
ng a test example. The OLNP problems are somewhat flexible and

lassifier can predict class label(s) for a test example at any level of
he class hierarchy. The proposed algorithm can only handle hier-
rchical single path classification problems, considering only the
LNP case.
puting 16 (2014) 34–49 35

The remainder of this paper is organized as follows. In the next
section, we review related research for hierarchical classification
task. In Section 3, we briefly present the basics and the background
of ACO meta-heuristic. In Section 4, the architecture of the proposed
solution will be discussed. Subsequently, in Section 5, we  present
simulation results to show the promising ability of our technique.
Finally, Section 6 will conclude this work.

2. Related work

One simple approach to deal with the hierarchical classification
problems is to completely ignore the given CHS by using a flat clas-
sification algorithm (e.g. decision tree or SVM, etc.), predicting only
leaf class nodes. This approach provides an indirect solution to the
hierarchical classification problem as if a class at leaf node is pre-
dicted, all the ancestor classes (considering the IS-A relationship)
are also implicitly assigned to the instance being classified. How-
ever, this approach suffers with higher prediction error. Moreover,
it cannot handle the OLNP based classification problems [10].

In order to incorporate the given CHS, researchers have pro-
posed extensions in the baseline classification methods. These
extended methods can basically be categorized based on multiple
criterions [10]. First criterion concerns the ability of the method to
handle the type of CHS (e.g. Tree or DAG). Second criterion is related
to the depth of CHS that is being targeted during the classification
procedure e.g. MLNP, OLNP, etc. Third criterion is about how the
given CHS is explored? Keeping in view these three criterions, some
strategies are reviewed in the following subsections.

2.1. Local classifier approaches

Local classifier approaches can handle MLNP and OLNP based
hierarchical single path as well as multipath classification prob-
lems with both tree and DAG class hierarchical structures. Koller
and Sahami [11] have proposed a local classifier approach based on
top-down strategy. In general, each class node is associated with
a baseline classifier, producing a classification model that predicts
the presence/absence of the corresponding class labels for the given
test instance. The question is: how many baseline classifiers, one
need to train? There exist three standard ways: (1) training a local
classifier per node (LCN), (2) training a local classifier per parent
node (LCPN), and (3) training a local classifier per level (LCL) [10].
We have chosen LCN approach (using C4.5 Decision Tree as base
classifier) as one of the competitors to the proposed algorithm
[7]. Disadvantages of local classifier approaches are summarized
in follows that motivated us to design a big-bang hierarchical clas-
sification approach (discussed in next subsection).

Local classifier approaches are computationally demanding,
since a classifier need to be trained n times where n is the number of
total class labels present in the CHS which can be thousands in num-
bers. These methods are usually affected with blocking problem (for
NMLNP) where misclassifications at higher levels are propagated
toward lower levels [10]. Top-down procedure, naturally fits a tree-
structured class hierarchy, where if parent classifier rejects the test
example, a child classifier does not receive the test example. When
dealing with DAG based CHS, the top-down procedure requires a
modification to handle multiple parent’s property [10]. The class
labels at deeper levels, potentially have fewer positive examples in
contrast to a greater number of negative examples. Many baseline
classifiers have problems with imbalanced class distribution and
thus classification error at deeper level is expected to be high [7].
2.2. Big-bang or global approach

For big-bang classification approach, a single global model is
built, considering all the hierarchically related classes at once, from
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Fig. 1. (a) Tree hierarchy, (b) 

 global perspective. This strategy generates a global classifica-
ion model that is compact in size and is typically considerably
maller as compared to any of the local classifier approaches, dis-
ussed in previous subsection. Big-bang approach is also known as
global” learning [10]. It is, however, difficult to model a global hier-
rchical classification technique. In order to determine potential
ompetitor(s), some big-bang hierarchical classification algorithms
re discussed in follows.

In the research work of Chen et al. [1], flat decision tree clas-
ifier is extended to handle the data arranged with hierarchical
lass labels. The algorithm use an extended entropy measure for the
election of best attributes. However, this algorithm cannot handle
he DAG CHS and therefore is not suitable for protein function pre-
iction problem. Another worth mentioning decision tree based
ethod to handle the hierarchical multi-label classification task,

s proposed in the work of Vens et al. [12], known as CLUS-HMC.
he idea of CLUS-HMC is based on the theory of predictive clus-
ering tree framework [13]. Each node in the tree is conceived as a
luster. The variance of the set of training examples (in class labels
pace) for a candidate cluster is used to decide about the selection
f an attribute-value pair. CLUS-HMC provides solution to both the
ree and DAG class hierarchical structures. CLUS-HMC is more suit-
ble for hierarchical multi-path classification problems, so do not
ualify, to become a candidate competitor of our proposed method.

The hAM (stands for hierarchical AntMiner) [7] is the first ACO
ased algorithm that can handle hierarchical single path classifi-
ation problems. It discovers hierarchical ordered IF–THEN rules.
he search space is based on two sub-graphs. First construction
raph, called Antecedent Construction Graph (ACG) is used to cre-
te antecedent part of the rule. Second construction graph, called
onsequent Construction Graph (CCG) is used to form the conse-
uent of the rule. The topology of ACG is same as used in c-AntMiner
15]. CCG’s topology is exactly the same as to that of the given CHS.
nterestingly, two separate ant colonies are employed to discover
he hierarchical classification rules. One ant colony is employed into
he ACG and the second ant colony is employed into the CCG. The
rst ant of the first colony is augmented with the first ant of the sec-
nd colony and so on so forth the remaining ants in the first colony

re paired with the corresponding ants in the second colony. The
ugmentation defines this way is used to form a complete IF–THEN
ule. However, no communication is carried out between the ant
olonies and therefore the construction of the rule antecedent and

Fig. 2. Hierarchical dataset give
ierarchy (two parents for ‘E’).

consequent parts is independent of each other. hAM is yet another
competitor to the proposed algorithm.

3. Ant colony optimization

Swarm Intelligence [16–18], which deals with the collective
behavior of small and simple entities, has been used in many
application domains. ACO, proposed in the early 90s [19–22], is
one of the most famous meta-heuristic under the umbrella of
Swarm Intelligence. Since its inception, ACO has been used to solve
many complex problems including those related to data mining
[23–25] as well as other combinatorial optimization problems.
ACO is inspired by the food foraging behavior of biological ants
[26]. Ants pass on the information about the trail they are follow-
ing by spreading a chemical substance called pheromone, in their
search environment. Ants communicate with each other by means
of pheromone. Other ants that arrive in the vicinity are more likely
to take the path with higher concentration of pheromone than the
paths with lower concentrations. In other words, the desirability
of possible paths is proportional to their pheromone concentra-
tions. The pheromone evaporates with time and if new pheromone
is not added, the older one dwindles away. This phenomenon has
been modeled in the ACO meta-heuristic. The learning of proposed
algorithm is based on ACO with following major requirements:

- The ability to represent a complete solution as a combination of
different components.

-  There should be a method to determine the fitness or quality of
the solution.

- A heuristic measure for the solution’s components (this is desir-
able but not necessary).

Suppose, we have a connected graph G = (V, E) where |V| denotes
the total number of nodes/ vertices and |E| total number of
connecting edges in graph. The simple ant colony optimization
meta-heuristic can be used to find the shortest path between a
given source node ‘Vs’ and a given destination node ‘Vd’ in the graph
‘G’. The path length is either given by the number of nodes on the

path or summation of cost values on edges constituting the path.
Each edge of the graph connecting the nodes ‘Vi’ and ‘Vj’  has a vari-
able (artificial pheromone), which is modified by the ants when
they visit the nodes [27].

n with partial animal CHS.
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Fig. 3. An example

From a node, when an ant decides which node to move next,
t uses two parameters to calculate the probability of moving to a
articular node; first, distance to that node and second, amount of
heromone on the connecting edge. Let di,j be the distance between
he nodes ‘i’ and ‘j’, the probability that the ant chooses ‘j’ as the next
ode after it has arrived at city ‘i’ where ‘j’ is in the set ‘S’ of cities
hat have not been visited [27].

i,j = [�i,j]
˛[�i,j]

ˇ

∑
k ∈ S[�i,k]˛[�i,k]ˇ

(1)

here �i,j is the pheromone value on edge e(i,j) and �i,j is a heuristic
alue calculated as 1/di,j. The parameters  ̨ and  ̌ are influencing
actors of pheromone value and heuristic value respectively. The
heromone at edges is usually initialized with small random val-
es at start. The complete route/tour of an ant from a source node
o a destination node is called a solution to the problem at hand.
he evaluation of a solution is done using a fitness function. Some
est ants (having good solutions) or all ants modify the pheromone
alues on the edges added to their tour. One possible modification
f the pheromone may  be done as:

i,j = �i,j + Q

L
(2)

here ‘Q’ is some constant and ‘L’ is the length of the tour,
mall the value of ‘L’ high the pheromone value added to the
revious pheromone value on an edge. With time, concentra-
ion of pheromone decreases due to diffusion affects; a natural
henomenon known as evaporation. This also ensures that old
heromone should not have a too strong influence on the future.

o, with evaporation, chances to stuck at local minima is minimized
n ACO. This evaporation can be performed as:

i,j = �i,j.� {Where � will be between 0 and 1} (3)
h space of hAM-C.

4. Method

In this section, we  discuss different stages of the proposed ACO
based hierarchical classification algorithm. We  begin with the def-
inition of the problem tackled in this work followed by a brief
general description of the proposed algorithm. Afterwards, each
and every stage of the approach is further discussed in a fair amount
of details. The stages are: search space design, rule construction
based on pheromone and a correlation based heuristic function,
rule evaluation, rule pruning, pheromone update and evaporation,
stopping criteria and formation of a default rule.

4.1. Problem definition

Given an input data set with a CHS, the goal is to build a list of
IF–THEN rules, such that two  objectives i.e. prediction accuracy and
prediction specificity is maximized.

4.2. General description

The core of the algorithm is the incremental construction of a
classification rule of the type

IF < term1 AND term2 AND . . . > THEN

< class 1, class 2, . . . class k > (4)

Each term is an attribute-value pair related by an operator. In
our current experiments, we use “ = ” as the only possible relational
operator. An example term is “Color = red”. The attribute’s name is

“color” and “red” is one of its possible values. Since we use only
“=” operator, any continuous (real-valued) attribute present in the
data, need to be discretized in a preprocessing step. The consequent
of the rule contain class labels that are hierarchically related based
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n the given CHS. The stages constituting the proposed approach
re discussed in the following subsections.

.3. Search space and tour construction

The first stage in an ACO algorithm starts with designing a prob-
em search space in which the ants conduct the search in order to
nd the candidate solutions. The search space for hAM-C (hierar-
hical AntMiner based on Correlation of Attributes) is defined with
he help of input dataset and a CHS. As shown in Fig. 3, the overall
earch space is divided into two parts; “Class Hierarchy sub-graph”
nd “Antecedent Construction sub-graph”. In the same way, an ant
s equipped with two types of memories. First type of memory
amed “class memory” is used to save the classes selected during
he tour of the ant in the class hierarchy sub-graph. The second type
f memory named “antecedent memory” saves antecedent part of
he rule during the ant tour in the antecedent construction sub-
raph. In this way, the rule consequent and antecedent parts are
onstructed cooperatively, and collectively represents a complete
our of an ant. In order to use proposed heuristic function (Section
.7), it is mandatory to construct the consequent of the rule before
onstructing its antecedent part. In other words, the selection of
onditions to be included in the rule antecedent part is determined
ased on the committed class labels. The search space of hAM-C is
odified and two sub-graphs are connected in order to serve this

urpose (Fig. 3).
The class hierarchy sub-graph is equivalent to the CHS given

ith the problem data set. The topology of the antecedent con-
truction sub-graph is the same as used in [28]. The antecedent
onstruction sub-graph can be considered as a DAG, where the
ertices are used to represent the terms (attribute–value pair)
xtracted from the input dataset. For constructing IF–THEN rules,
he task of ants is to visit a vertex based on some heuristic (dis-
ussed later) and pheromone value found on the edges in the search
pace. The statistic about the total number of terms present in the
ataset can be calculated as:

otal terms =
a∑

n=1

bn (5)

here ‘a’ is the total number of attributes (excluding the class
ttribute) and ‘bn’ is the number of possible values in the domain of
ttribute ‘An’. After a term has been selected (i.e. a vertex is visited),
he attribute related to that term is flagged as used. During the tour
f an ant, once an attribute is flagged used, no other term related to
hat attribute can be selected, further. This restriction is necessary;
s we cannot allow conditions of the type “Weather = Cloudy AND
eather = Sunny” (both at the same time). In this way, an ant can

ick any of the vertex (in the antecedent construction sub-graph)
nd there is no fixed ordering in which the vertices are required
o be visited. This is to discourage the biasness of vertices order-
ng introduced in AntMiner+ [22] which is not a good strategy as
iscussed in [37].

When an ant starts it tour, the class memory is activated and
he antecedent memory is deactivated. Ant starts it tour from the
tart vertex (in class hierarchy sub-graph) which is originally the
oot class label of the class hierarchy, present in the given CHS.
s, the proposed algorithm handles single path hierarchical clas-
ification algorithm, only one node is allowed to be selected at
very single level of the class hierarchy sub-graph. The selection of
he nodes in the class hierarchy sub-graph is based on the heuris-

ic values associated with the edges (discussed later). Once the
nt reaches the node with the label “Switch Ant Memory”, the
ntecedent memory is activated and class memory is switched
ff.
puting 16 (2014) 34–49

Each and every ant can select different sets of class labels as done
in hAM [7]. However, this is against the main essence of coopera-
tive learning of ACO. For example, each ant learning a separate goal,
cannot meaningfully update the common search environment (by
means of pheromone). In order to ensure that entire swarm learns
the same set of class labels (i.e. common goal) during an iteration
of the hAM-C algorithm (discussed later), only first ant traverses
through the class hierarchy sub-graph and the class labels it selects
is simply copied to the class memory part of all the remaining
ants. Thus, all the ants searches for the terms to be added to the
antecedent of the rule that best describes the selected class labels.
All the ants are then placed at node “Switch Ant Memory” and the
antecedent memories of all the ants are activated while the class
memories of all the ants are deactivated. Now, all the ants traverse
the antecedent construction sub-graph and fill up their antecedent
memories.

4.4. Complete algorithm

The heart of the algorithm is the outer most WHILE loop (Fig. 4)
where several candidate rules are constructed. Class labels are com-
mitted prior to the construction of the antecedent part of the rule.
It is pertinent to note that all the ants search for the terms (to
be added into their antecedent memories) that best describes and
discriminate the same common class labels present in their class
memories. During an iteration of the first inner REPEAT-UNTIL loop
of the algorithm, several ants are sent to construct antecedent
part of the candidate rules (second inner REPEAT-UNTIL loop). The
quality of the candidate rules is determined after pruning and
the iteration best rule is selected. This rule is used to update the
pheromones of the trails in the antecedent construction graph;
where the pheromone on the edges present in the rule are increased
based on the quality of the rule. Later, evaporation is performed
on all the trails of the antecedent construction graph (discussed
later). Each new ant in an iteration of the second inner REPEAT-
UNTIL loop is guided by the experience of the ants in previous
iteration (of the first inner REPEAT-UNTIL loop), available in the
form of pheromone values. The best rule is updated if the itera-
tion best rule is better than the best rule found so far. After several
iterations of the first inner REPEAT-UNTIL loop, the search pro-
cess converges. The convergence is declared by analyzing that the
iteration best rules are equivalent over iterations equal to a user
defined parameter no rules converge or in other words, best rule is
not updated during last few iterations equal to no rules converge. In
this way, early convergence is possible before executing total num-
ber of iterations given as an input by user. The learning process also
stops if the size of the training set has reduced enough and contain
training instances that are no more than a user defined parameter
Max Uncovered Cases.

4.5. Pheromone initialization

The initial pheromone between two  terms termi and termj
belonging to two different attributes is computed as:

�ij(iter = 1) = 1∑a
n=1xnbn

(6)

where xn is set to 0 if termi belongs to attribute An, otherwise, it is
set to 1. This method of pheromone initialization is adopted from
AntMiner-C [28].
4.6. Term/class selection

An ant incrementally add terms in the antecedent part of the rule
that it is constructing during its tour in the antecedent construction
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DiscoveredRuleList = {}; /* rule list is initialized as empty list */
TrainingSet = {all  trai ning sa mples} ; 
Cons truc t the  class h ier arch y sub-gr aph; 
WHILE( |TrainingSe t| > Ma x_un covered_ samples)  /*main  WHILE loop  (core  of  hAM-C)*/
 Calc ulate  heur istic  values  for all  the edges  of  class  hi erar chy  sub-gr aph; 

Send an ant to construct consequent of the rule from class hierarchy sub-graph; 
Copy the selected class labels to the class memories of all the ants; 
De-active class memories and activate antecedent memories of all the ants; 
Construct the antecedent sub-graph for reduced training set; 
Initialize pheromone values on all the edges of antecedent construction sub-graph;  
Calculate heuristic values for all the edges of antecedent construction sub-graph for the selected 
class labels;
iter = 1;   /* counte r for  ite rations  */
best_rule = {} ; 

  rcc = 1;   /*  counter  for  rule  convergence  test  */
REPEAT /*fir st inner RE PEAT loop* /

Iteratio n_bes t_rule = {};
 t = 1;  /* counter for ants */
 REPEAT  /*second  inner  REPEAT  loop* / 

Send Ant  t to cons truc t antec eden t of the rule Rt for the selecte d class  la bels; 
   Prun e rule Rt and ass es it s quality;  

 IF  (Rt is better  than Iterat ion_best_ rule ) 
THEN Iteratio n_bes t_ru le = Rt; 

   IF  (Iter ation _best _rule is  better  than best_rul e) 
   THE N bes t_rule = I teratio n_bes t_rule; 
    END IF 
  END IF 

t =  t + 1 ; 
UNTIL (t ≥ swarm_size ) 
update ph eromone of  all  th e anteced ent sub-gr aph trails  ba sed  on  Iterati on_best_rule; 
IF (Iteration _be st_rule == best_ru le) /* upda te converg ence  te st */
 THE N rcc =  rcc + 1 ; 
 ELS E rcc = 1; 
END IF 
iter = iter  + 1;

UNTIL (ite r ≥ total_iter ati ons) OR (rcc ≥ no_ rules_c onverg e)  
Prune the best bes t_rule an d asses  its  quality ; 
Add  the  pruned bes t_rule to  DiscoveredRuleList ;  
Remove  the training sa mples cov ered by the pru ned bes t_rul e; 

END WHILE      
Add a default  rule  in the DiscoveredRuleList : 
Prune the DiscoveredRuleList ; (O ptio nal)  
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Fig. 4. hA

ub-graph. The selection of the next term is subject to the restriction
hat a term from its attribute An should not already be present in the
urrent partial rule. In other words, once a term has been included
n the rule then no other term from that attribute can be considered
nwards. Subject to this restriction, the probability of selection of a
erm for addition in the current partial rule is given by the equation:

ij(t, iter) = �ij
˛(iter)�ij

ˇ(s)
∑Total terms

j=1 xj{�ij
˛(iter)�ij

ˇ(s)}
(7)

here �ij(iter) is the amount of pheromone associated with the
dge between termi and termj for the current iteration equal to ‘iter’,
ij(s) is the value of the heuristic function for the current iteration s

f the main WHILE loop (constant/similar for a batch of ants), xj is a
inary variable that is set to 1 if termj is selectable, otherwise it is 0.
electable terms are those which belong to attributes which have
ot become prohibited due to the selection of a term belonging to
lgorithm.

them. The denominator is used to normalize the numerator value
for all the possible choices.

The parameters  ̨ and  ̌ are used to control the relative impor-
tance of the pheromones and heuristic values in the probability
determination of next movement of the ant. For the selection of
nodes or class labels in the class hierarchy sub-graph, the Eq. (7)
can be modified as follows:

Pij(t = 1) = �ij∑|Ei |
j=1xj{�ij

ˇ}
(8)

where �ij is the value of the heuristic function on the edge between

nodei and nodej where the node is a class label in the class hierarchy
sub-graph and nodej must have IS-A relationship with nodei based
on the given CHS. xj is a binary variable that is set to 1 if class nodej
is present in the current training set, otherwise it is 0.
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.7. Antecedent heuristic function

The heuristic value of an edge gives an indication of its use-
ulness and thus provides a basis to guide the search process. The
euristic function (Eq. (9)) for antecedent construction sub-graph

s based on the correlation of the most recently chosen term (in the
our of the current ant) with other candidate terms in order to guide
he selection of next term. In order to make most reasonable (and
ossibly most accurate) next move, ants can see backward toward
he moves it already made. This ensures that the next move would
e appropriate to the current context rather than the context at the
tart of the search process. This novelty is introduced to accommo-
ate the limitation of hAM [7] where no historical information is
sed. For instance, the decision (generated by a brain) about how
ast to run (or when to change direction), made by a Cheetah while
reying a Deer is based on the context at that time and current
osition of the Cheetah rather than the position from where the
heetah actually started his deadliest action. Same is the case for
ill climbing and many of the other real world problems. So, with
his motivation, we use history of the ant partial tour to guide it
urther in the search space. Only single recent term selected by an
nt is considered for making a decision about the selection of next
erm within the antecedent construction sub-graph. This makes the
euristic calculation computationally less demanding as compared
o analyzing all the terms present in the current partial tour of an
nt.

ij =
L∑

k=1

∣∣termi, termj, classk

∣∣
∣∣termi, classk

∣∣ .

∣∣termj, classk

∣∣
∣∣termj

∣∣ (9)

ere L is the total number of class labels present in the class mem-
ry of an ant and k ∈ [1 L]. The most recently chosen term is termi
nd the term being considered for selection is termj. The number
f uncovered training samples having termi and termj and which
elong to the class label k in the committed labels L of the rule is
iven by |termi, termj, classk|. This number is divided by the number
f uncovered training samples which have termi and which belong
o classk to find the correlation between the terms termi and termj.
his correlation value is finally multiplied with the probability of
ermj having class k. The probability of termj having class k is the
eight of termj in order to correctly classify the instances having

lass k. The value of the heuristic function is zero for edges between
erms of the same attribute.

The heuristic values on the edges between the Start node and
he first layer terms of the antecedent construction sub-graph are
alculated on the basis of the following Laplace-corrected confi-
ence [25] of a term:

Start,j =
∑L

k=1(|termj, classk| + 1)/(|termj| + m)

L
(10)

here m is the number of classes present in the dataset. This heuris-
ic function has the advantage of penalizing the terms that would
ead to very specific rules and thus helps to avoid over-fitting. For
xample, if a term occurs in just one training sample and it class
abels are the same as chosen class labels, then its confidence is 1

ithout the Laplace correction (i.e. without adding 1 and m in the

q. (10)). With Laplace correction, its confidence is 0.66 if there are
wo classes in the data. Before usage, the values obtained by Eq.
10) are normalized by the summation of all such values between
he Start node and the first layer of terms.
puting 16 (2014) 34–49

4.8. Consequent heuristic function

The heuristic function to be used in the class hierarchy sub-
graph is based on the frequency of class labels and is calculated
as:

�ij = |Classj| (11)

where �ij is the value of the heuristic function on the edge
between nodei and nodej and |classj| is the number of training
instances that contain classj in their class domain. The heuristic
function has a bias toward class labels that have a greater number
of examples, which therefore will initially favor the discovery of
rules with the class labels with higher frequencies [7]. However,
due to the use of a sequential covering procedure, such instances
will be removed from the training set based on the coverage of
the predicted rules; thus, class labels with lower frequencies will
eventually get their chance of selection.

4.9. Rule quality

Once the rule is constructed by an ant, its quality is determined
which is used to update the pheromone values in the search space.
An appropriate quality measure is essential in order to influence
the search process in right direction. The quality of the hierarchi-
cal classification rule is based on a modified hierarchical measure
proposed in [29] and used in [7]. The evaluation measure takes into
account both the hierarchical precision and recall and it also keep
in consideration the IS-A relationship among the class labels.

As discussed earlier, the consequent of the rule is the trail of an
ant in the class hierarchy sub-graph from root class node to one
of the leaf class nodes. For tree based CHS, all the ancestors of a
predicted class label will be present in the consequent of the rule.
However, for a CHS represented by a DAG (where multiple paths
between a given pair of class nodes can exist), all the ancestors of
a predicted class label are explicitly added as:

Lex = L ∪ {∀li ∈ L Ancestors (li)} − root (12)

where L represents the original predicted class labels during the
tour of an ant in the class hierarchy sub-graph. Lex is the expanded
class labels such that all the ancestors of a predicted class label
li ∈ L denoted as Ancestors(li) are also included in the final set of
predicted class labels. The hierarchical macro-averaged measures
of precision and recall are calculated as:

hP =
∑

i ∈ Covr
(|Ti ∩ Lex|)/(|Lex|)
|Covr | and hR

=
∑

i ∈ Covr
(|Ti ∩ Lex|)/(|Ti|)
|Covr | (13)

where Covr is the set of all training instances covered (satisfying the
rule antecedent part) by the rule r. Ti is the set of true class labels of
the ith instance. The hierarchical precision represents the average
number of true class labels correctly predicted by rule r, divided by
the total number of class labels present in Lex. The hierarchical recall
is the average number of predicted class labels predicted correctly
by rule r, divided by the total number of true class labels that should
be predicted for Covr .

Both of these measures, hP (hierarchical precision) and hR (hier-
archical recall), are combined (using Eq. (14)) to calculate the hF
(hierarchical F-measure) value. The hF value is used as the quality

criteria for the hierarchical rule ‘r’.

Qr = hF = 2 . hP . hR

hP + hR
(14)
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best_rule  =  rule_r; 
qbest  =  Q (r ule _r); 

REPEAT /*first outer REPEAT loop*/ 

rule_i   =  best_ru le;
rule_i →antecedent   =  re move_last_ter m (  rule_i→antecedent  ); 
qi = Q (rule_i);
consequentc  =  rule_i→consequent; 
REPEAT /*fir st inner RE PEAT loop* / 

consequentc  =  remove_last_class ( consequentc );
rule_c→antecedent   =   rule_i→antecedent; 
rule_c→consequent   =   consequentc;
IF ( Q(rul e_c ) >  q)  THENi

rule_i   =  rule_c; 
qi = Q(rule _c);

END IF 
UNTIL ( |consequentc |  ==  1) 
IF (qi ≥ qbest)  THE N

best_rule   =  rule_i; 
qbest = q;i

END IF 
UNTIL (  q  <  qi best OR |best_r ule→anteced ent|  ==   1) 
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Fig. 6. The pheromone values for the antecedent construction graph of example
problem given in the Fig. 3. The elements of (a) are the pheromone values on edges
from Start node to nodes of the first layer of terms in the antecedent construction
graph. The elements of (b) are pheromone values on the edges between the terms
present in any of the two  consecutive layers of the antecedent construction graph.
For example, the first row elements are the pheromone values for edges from the
term A1 to all the other terms in the next layer. These values are the same for edges
between 1st and 2nd layer, 2nd and 3rd layer, and so on. If an ant chooses C1, A3,
Fig. 5. Pseudo code for rule pruning procedure.

.10. Rule pruning

Is it possible to further improve the quality of a discovered rule?
ne possibility is to apply the pruning process on the rule soon after

t gets discovered (and before adding it to the discovered rule list).
he pruning process is intended to improve the quality of a rule
fter removing irrelevant or copious terms and/or class labels from
he antecedent and consequent parts of the rule, respectively. It
lso makes the rules compact in size which adds to the compre-
ensibility power of the rules-based classification algorithms. We
ave adopted the pruning process (Fig. 5) as used in the research
ork of Fernando et al. [7].

.11. Pheromone update and evaporation

The decision of an ant about making it moves in the search space
s controlled with two important parameters as shown in the Eqs.
7) and (8). Pheromone values on the edges are an important learn-
ng dynamic for the ACO algorithm. The quality of ant trails is used
o make efficient use of the pheromone values. The pheromone
alues on the edges are updated in proportion to the quality of the
rails and thus define the learning directions for the subsequent
ransitions of the entire swarm.

For hAM-C, the pheromone values in antecedent construction
raph are stored as a square matrix where one dimension of the
atrix is equal to the number of total terms present in the given

ataset. The pheromone matrix is interpreted as an asymmetric
atrix which helps in exploring the search space in great details.
n example pheromone matrix is shown in Fig. 6. The pheromone
atrix is asymmetric and captures the fact that pheromone values

n edges originating from a term to other terms are kept the same in
ll the layers of the antecedent construction graph. In other words,
he same matrix is valid for any pair of the two consecutive lay-
rs. The matrix is asymmetric because for a constructed rule with
ermi occurring immediately before termj, the pheromone on edge
etween termi and termj (→ titj) is updated but the pheromone on
dge between termj and termi (→ tjti) is not updated.
During the first iteration of the first inner repeat loop of the
AM-C algorithm, the pheromone values on the edges of the
ntecedent construction graph are the ones initialized with the help
f pheromone initialization procedure. The pheromone values in
D1  and B1 terms in its trail, the elements �06, �63, �39 and �94 are updated according
to  Eq. (15). For normalization, each pheromone element in a row is divided with the
summation of all pheromone values in the same row.

the antecedent construction graph remain unchanged during the
execution of the second inner repeat loop. In other words, all the
ants have the same environment in terms of pheromone values.
After completion of the second inner loop, the iteration best trail is
used to update the pheromone matrix. In this way, the experience
of the swarm in the iteration ‘t’ of the first inner repeat loop is made
available to the swarm in next iteration i.e. ‘t + 1′ of the first inner
repeat loop. It is assumed that each new iteration of the first inner
repeat loop, results in a better experience of the swarm toward
the problem search space. The amount of pheromone on the edges
between consecutive terms occurring in the iteration best trail is
updated as:

�ij(t + 1) = (1 − �)�ij(t) + (1 − (1/1 + Q ))�ij(t) (15)

where �ij(t) is the pheromone value encountered in iteration
‘t’ (of the first inner repeat loop) between termi and termj. The
pheromone evaporation rate is represented by � and Q is the quality
of the current iteration best trail.

Eq. (15) updates pheromones by first evaporating a percentage
of the previously seen pheromone and then adding a percentage of
the pheromone dependent on the quality of the iteration best rule.
If the rule is well representative to the data available in the current
training set, the quantity of pheromone added is greater than the
pheromone evaporated and the terms constituting the rule become
more attractive for the ants in the subsequent iterations. The evap-
oration process (as performed in Eq. (15)) improves exploration,
otherwise in the presence of a static heuristic function, the ants
tend to converge quickly to the terms selected by the entire swarm
during the first few iterations of the first inner repeat loop.
The next step is to normalize the pheromone values. Each
pheromone value is normalized by dividing it with the summa-
tion of pheromone values on edges of all its competing terms. In
the pheromone matrix (Fig. 6), normalization of the elements is
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Table 1
Summary of the differences between hAM-C and hAM.

hAM-C hAM

Utilizes a single ant colony Utilizes two ant colonies
A  search space with two connected sub-graphs Two separate search graphs
Consequent is committed beforehand in order

to construct the antecedent of the rule
Construction of antecedent and consequent part is independent and irrelevant

Hierarchical correlation based heuristic
function for which the history of ant tour is
important

Hierarchical information gain where terms interactions are ignored

Utilizes an asymmetric pheromone matrix Utilizes a symmetric pheromone matrix
In  the main iteration of the algorithm, all the During an iteration, every single ant might be learning for a different set of class labels
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ants perform learning for a single set of class
labels

No  direct support for continuous attributes It can

one by dividing them with the summation of values of the row to
hich they belong. Note that for the rows where no change in the
heromone values has occurred (after applying Eq. (15)), the nor-
alization process yields the same values as before. This process

hanges the amount of pheromone associated with those terms that
re not present in the iteration best rule but are the competitors of
he selected terms.

.12. Default rule

A rule, predicted during the execution of the algorithm, is
estricted to cover at least a number of training instances equivalent
o a user defined parameter i.e. Min  Cases Per Rule. This restriction
elps in avoiding too specific rules that would cause over-fitting
roblem. Based on this restriction, there is a possibility that no rule

s predicted during an iteration of the outer most WHILE loop. This
sually happens when the training set is reduced enough and con-
ain very few instances and there in no term available to be added to
he rule which covers instances equal to Min  Cases Per Rule. In such

 situation, learning is stopped and a rule with empty antecedent
art and selected class labels is added to the discovered rule list
rule with empty antecedent, covers all the training instances). It is
lso important to note that the coverage of a rule in hAM-C, has dif-
erent meaning as compared to flat classification based AntMiner’s.
or flat classification based AntMiner’s, a rule is consider to cover

 training sample, if the sample values is in accordance with the
onditions of the rule antecedent part and the class value of the
ample also matches the rule consequent part. It is however not
traight forward to find a hierarchical rule with the consequent
xactly matching with the class values of a training sample. There-
ore, for the coverage of a hierarchical rule, consequent part is not
hecked against the class values of training sample.

Another such situation (for stopping the execution of algo-
ithm) is faced when the size of the training set has reduced

nough and contain training instances that are no more than a
ser defined parameter Max  Uncovered Cases. In this case, a default
ule is added to the discovered rule list. The default rule has
n empty antecedent part and therefore covers all the training

able 2
ummary of the datasets used in the experiments.

Class hierarchy type Dataset Attributes 

DAG

Ds1 aa 22 

Ds1  interpro 92 

Ds2  aa 22 

D2  interpro 155 

Tree

Glass 9 

Bridge 12 

AA  tree 22 

Interpro tree 92 
e continuous attributes

instances in the current training set. If only one class label is left
(i.e. root class label) in the current training set, it is assigned as the
consequent of the default rule. Otherwise, the class label (except
root) that is occurring in majority of the current training instances,
is selected as the consequent of the default rule. If there is a tie
between two  or more class labels, class label that is at lower level
of the class hierarchy is preferred. The class label at the lower level
is preferred to improve the prediction specificity. However, in a sit-
uation when the class labels that are in tie are at the same level of
the class hierarchy, a single class label in tie is selected, randomly.

After the algorithm finished its learning, the discovered rules
are used (in order) to classify the test examples, In particular, a test
example is selected and given to the model, generated by training
phase. The rule antecedent part is checked against the given test
example, starting from the first predicted rule and continuing the
search on the predicted rule list (in sequence), until a matching rule
is found. At the end, consequent of the selected rule is assigned to
the test example.

4.13. Overview of differences between hAM-C and hAM

The proposed algorithm has few parts in common to that of
hAM; as all of the current versions of ant-based classification model
are originally inspired from the work of Parpinelli et al., known as
AntMiner [14], thus share a number of common traits. In Table 1, we
summarize some of the main differences between hAM and hAM-C
(proposed algorithm). Some of these key differences are empirically
analyzed in Section 5.3.

5. Results and discussion

In this section, we  present the simulation results of our pro-
posed method (hAM-C) in comparison with another hierarchical
single path classification ACO based algorithm (hAM), proposed in

the work of Otero et al. [7]. The proposed algorithm is implemented
in the Microsoft Visual Studio (2008) development environment
using C-Sharp language. On the other hand, for hAM [7], JAVA
based implementation is kindly made available by Otero. All the

# Continuous attributes # Instances Total classes

22 147 19
2 147 19

22 371 17
2 359 17

9 214 12
4 108 08

22 147 19
2 147 19
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Table  3
Class hierarchical structure of all the datasets.

Ds1 aa & Ds1 interpro datasets class hierarchy
Node {list of direct parent(s)}

Ds2 aa & Ds2 interpro datasets class hierarchy
Node {list of direct parent(s)}

GO:0005215 @Root GO:0005216 @Root
GO:0015267 {GO:0005215} GO:0005253 {GO:0005216}
GO:0015075 {GO:0005215} GO:0005261 {GO:0005216}
GO:0005342 {GO:0005215} GO:0015276 {GO:0005216}
GO:0005275 {GO:0005215} GO:0005244 {GO:0005216}
GO:0015268 {GO:0015267} GO:0005254 {GO:0005253}
GO:0008324 {GO:0015075} GO:0005272 {GO:0005261}
GO:0008509 {GO:0015075} GO:0005227 {GO:0005261}
GO:0005216 {GO:0015268,GO:0015075} GO:0005267 {GO:0005261}
GO:0046943 {GO:0005342} GO:0005262 {GO:0005261}
GO:0015171 {GO:0005275,GO:0046943} GO:0004889 {GO:0005261,GO:0005231}
GO:0005261 {GO:0008324,GO:0005216} GO:0005230 {GO:0015276}
GO:0005253 {GO:0008509,GO:0005216} GO:0022843 {GO:0005244}
GO:0005244 {GO:0005216} GO:0005249 {GO:0022843,GO:0005267}
GO:0015276 {GO:0005216} GO:0005245 {GO:0022843,GO:0005262}
GO:0005262 {GO:0005261} GO:0005231 {GO:0005230}
GO:0005267 {GO:0005261} GO:0005242 {GO:0005249}
GO:0005245 {GO:0005262,GO:0005244}
GO:0005249 {GO:0005267,GO:0005244}

Glass dataset class hierarchy Node {list of direct parent(s)} Bridge dataset class hierarchy Node {list of direct parent(s)}
Glass @Root Type @Root
window {Glass} WOOD {Type}
non-window {Glass} SUSPEN {Type}
float {window} ARCH {Type}
non-float {window} TRUSS {Type}
5  {non-window} CANTILEV {TRUSS}
6  {non-window} CONT-T {TRUSS}
7  {non-window} SIMPLE-T {TRUSS}
1  {float}
2 {non-float}
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level.
As, it is not possible to analyze the entire GO hierarchy at once,

first, a subset of the hierarchy is selected. Specifically, the direct

IF 
IPR001993 = 'no'      AN D     IPR002394 = 'no'      AN D
IPR002293 = 'no'      AN D     IPR001991 = 'no'       AN D
IPR001905 = 'no'      AN D     IPR002946 = 'no'     AN D
IPR001807 = 'no'     AND weight = '-inf-66437.9' AND
 IPR000900 = 'no'     AND     IPR001925 = 'no'      AND
 IPR011701 = 'no'      AN D     IPR001873 = 'no' 

THEN  
'GO:0005215, GO:0015075, GO:0005216,  
3 {float }
4  { non-float}

xperiments are conducted on an Intel Core i3 Processor with a CPU
lock rate of 2.4 GHz and 2 GB of main memory. This section is fur-
her divided in several subsections as follows. First, we  discuss the
atabase/data set generation method and evaluation methodology
sed in our experimental results. Second, the effectiveness of the
roposed technique is evaluated based on tenfold cross validation.

n order to analyze the statistical significance between the perform-
nces of two competing algorithms, two tailed Student’s t-test is
onducted and performance differences are reported. Afterwards,
he overall model complexities of the algorithms is compared using
wo tailed Wilcoxon signed rank test. Experiments are conducted
or a decision tree classifier that works based on LCN strategy and
verall comparison of all the algorithms is reported. At the end,
everal design choices for hAM-C algorithm are empirically inves-
igated in order to observe the significance of the differences with
AM algorithm.

.1. Dataset generation and evaluation methodology

In order to evaluate the proposed method, six ion-channels pro-
ein functions data sets (related to protein function prediction) and
wo publicly available data sets are collected. The datasets related
o ion-channels protein functions are kindly provided by Fernando
.B. Otero [7]. The remaining two publically available datasets (glass
nd bridge) are collected from the UCI Machine Learning archive
31]. The datasets glass and bridge are usually used to evaluate the
erformance of a flat classification algorithm. However, the CHS is
lso available with these datasets in order to format the datasets

o be used as benchmark for hierarchical classification algorithms
1]. The detail of datasets is provided in Table 2. The class labels of
ll of these datasets are organized based on DAG hierarchy except
he bridge and glass datasets where tree representation is used. The
description of CHS, associated with these datasets, is summarized
in Table 3. The discussion on why the analysis of ion-channel pro-
teins is important and how these datasets [7] are created is provided
as follows. The proteins related to ion-channels are present in all
biological (living) cells and considered a pore forming protein
across the cell membrane [30]. The ion channels are the integral
membrane proteins and allows specific inorganic ions (e.g. K+, Na+,
Ca2+, Cl−) to cross/pass through the cell membrane and play an
important role in many cell functions, such as in functions related to
the muscle contraction, nervous system and T-cell activation [7]. It
is therefore essential to analyze the ion-channels proteins functions
in order to improve biological knowledge, diagnosis and treatment
of diseases and understanding the working of organisms at micro
GO:0015268, GO:0015267, GO:0005261,  
GO:0008324, GO:0005262, GO:0005245, GO:0005244' 

Fig. 7. An expanded pruned rule for a fold result of DS1 interpro dataset (hAM-C).
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Table 4
Parameters used in experiments.

Parameter Value

Number of ants 20
Max. uncovered samples 10
Evaporation rate 0.15
No. of rules converged 10
Minimum cases per rule 5
Maximum iterations 500
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ncestors and all the descendents GO terms of ion-channel activity
GO:0005216) are selected to form the CHS to be predicted [7]. Next,
he protein interaction data from the IntAct database is retrieved
onsidering database cross-references for all the selected GO terms.
he GO terms with less than 10 protein examples are ignored.
n order to collect predictor attributes, the amino acid sequence
nd InterPro pattern references are collected for each protein
xample from the UniProt database (release 12.0), using the
atabase cross-reference to UniProt found in IntAct protein exam-
le records. In this way, 147 protein examples involving 19 (2

gnored) GO terms are collected. The dataset ‘Ds1 aa’ & ‘Ds2 aa’
s composed of each of the 20 amino acid composition infor-

ation as predictor attributes, containing the percentage of the
equence as continuous values [7]. The dataset ‘Ds1 interpro’ &
Ds2 interpro’ used the InterPro pattern information as predictor
ttributes, containing Boolean attributes, representing the pres-
nce or absence of a particular InterPro pattern. The datasets

Ds2 aa’ and ‘Ds2 interpro’ are formed without the restriction of
electing proteins with protein interaction data. Two  additional
ree based datasets are formed, namely ‘AA tree’ and ‘Interpro tree’.
he attributes of the ‘AA tree’ dataset is based on amino acid
equence. Datset ‘AA tree’ is formed in the same way as to that of
Ds1 aa’ dataset with the difference that only the first single direct
arent of a particular class label is considered in order to ignore DAG
ased relationships. The ‘Interpro tree’ dataset is based on Inter-
ro pattern references and formed in the same way as to that of

Ds1 interpro’ dataset with the difference that only the first single
irect parent of a particular class label is considered and multiple
arents are ignored. After creating these datasets, two  more pre-
ictor attributes (namely, sequence length and molecular weight)
erived from the proteins primary sequences are added to all of
hese datasets. For more details, readers are kindly referred to [7].

The evaluation of hAM-C experiments is performed using
0-fold cross validation and hF (hierarchical F-Measure) values
nalysis. In particular, a data set is randomly partitioned into 10
on-overlapping and mutually exclusive subsets. For the experi-

ent of fold i, subset i is selected as testing set and the remaining

ine subsets are used to train the classifier. Using 10-fold cross
alidation experiments, the performance of the hAM-C can be
onfirmed against any kind of the selection biased of the samples

able 5
omparison of hAM-C with hAM based on hF values.

Dataset hAM-continuous data (average rank = 2.0) hAM-discretized (

hP hR hF hP h

Ds1 aa 0.55 ± 0.04 0.70 ± 0.04 0.61 ± 0.04 0.49 ± 0.06 0
Ds1  interpro 0.60 ± 0.03 0.82 ± 0.03 0.69 ± 0.02 0.63 ± 0.06 0
Ds2  aa 0.55 ± 0.04 0.73 ± 0.04 0.62 ± 0.04 0.58 ± 0.06 0
D2  interpro 0.83 ± 0.02 0.80 ± 0.01 0.81 ± 0.01 0.83 ± 0.06 0
Glass  0.83 ± 0.02 0.82 ± 0.02 0.82 ± 0.02 0.58 ± 0.05 0
Bridge  0.65 ± 0.04 0.66 ± 0.04 0.66 ± 0.04 0.69 ± 0.04 0
AA  tree 0.47 ± 0.03 0.50 ± 0.04 0.48 ± 0.03 0.43 ± 0.02 0
Interpro  tree 0.59 ± 0.03 0.63 ± 0.02 0.61 ± 0.02 0.58 ± 0.01 0

he values where the algorithms perform the best are highlighted as bold.
puting 16 (2014) 34–49

for training and testing phases. In order to have a fair comparison,
same 10-fold cross validation subsets are used for all the data sets.
Moreover, the model size (in terms of number of rules and num-
ber of terms per rules) of the two competing algorithms are also
compared to analyze the model complexities. An example hierar-
chical IF–THEN rule, predicted by hAM-C for DS1  interpro dataset,
is shown in Fig. 7. At the end, the number of ants originally used to
predict a single rule in the discovered rule list and total probability
calls evaluated during the execution of the proposed algorithm are
reported.

There are six user defined parameters associated with hAM-C:
swarm size, maximum uncovered samples, evaporation rate, con-
vergence counter threshold, alpha and beta. The values of these
parameters are given in Table 4. These values have been chosen
because they seems to provide reasonable performance as reported
in the earlier versions in literature [7]. Optimization of these param-
eters is avoided, as our goal is to evaluate the parameter settings
generalization ability across a wide range of data sets.

5.2. Experimental results over datasets

In this section, the results of hAM-C are compared with hAM
[7] on the basis of hF values and model size. The proposed algo-
rithm works with categorical attributes and continuous attributes
need to be discretized in a preprocessing step. An unsupervised
discretization filter of Weka-3.4 machine learning tool [25] is used
for discretizing continuous attributes. This filter first computes the
intervals of continuous attributes from the dataset and then uses
these intervals during discretization procedure. On the other hand,
hAM is capable of handling both the categorical as well as continu-
ous values. We  therefore conducted the experiments using hAM for
discretized (hAM-Disk) and non-discretized (hAM-Cont for contin-
uous valued attributes) datasets, separately.

Table 5 presents the results concerning the hR (hierarchical
Recall), hP (hierarchical Precision) and hF (hierarchical F-Measure)
values where the higher the hF values the better the classification
performance is. Moreover, all the algorithms are assigned with the
average ranking based on a nonparametric Friedman test with post
hoc Holm test [32,33] based on hF values for all the datasets. The
Friedman test is chosen because it does not make any assumptions
about the normal distribution of the underlying data (a require-
ment for equivalent parametric tests) and it is a recommended
and suitable test to compare a set of classifiers over multiple data
sets, according to the guidelines presented in [32,33]. The lower the
average ranking the better is the performance of the algorithm. A
single value in Tables 5, 7 and 9 corresponds to the average value
obtained using tenfold cross validation followed by the standard
error in the form (average ± standard error). Table 6 presents the

comparison of significance differences between the tenfold hF val-
ues (over a dataset) of the two  competing algorithms based on two
tailed Student’s t-test [34] at the 0.01 significance level. The null
hypothesis is that the difference between the average hF values of

average rank = 2.31) Proposed hAM-C (average rank = 1.68)

R hF hP hR hF

.53 ± 0.12 0.50 ± 0.07 0.71 ± 0.02 0.63 ± 0.05 0.66 ± 0.03

.83 ± 0.04 0.71 ± 0.04 0.82 ± 0.03 0.78 ± 0.02 0.80 ± 0.02

.55 ± 0.05 0.56 ± 0.05 0.56 ± 0.03 0.51 ± 0.02 0.54 ± 0.02

.81 ± 0.03 0.82 ± 0.03 0.78 ± 0.08 0.80 ± 0.06 0.79 ± 0.06

.47 ± 0.06 0.51 ± 0.06 0.84 ± 0.01 0.86 ± 0.01 0.85 ± 0.01

.70 ± 0.04 0.69 ± 0.04 0.69 ± 0.02 0.70 ± 0.03 0.69 ± 0.02

.45 ± 0.03 0.43 ± 0.02 0.65 ± 0.04 0.49 ± 0.03 0.56 ± 0.03

.66 ± 0.02 0.62 ± 0.02 0.75 ± 0.03 0.58 ± 0.02 0.65 ± 0.02
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Table  6
Comparison based on two tailed Student’s t-test at 0.01 significance level (hF).

Hypothesis Dataset t-Value p-Value Null hypothesis (H0)

hAM-C vs. hAM-Cont

Ds1 aa 0.888266629 3.86 × 10−01 –
Ds1 interpro 3.136265724 5.71 × 10−03 Reject�
Ds2  aa 2.003902882 6.04 × 10−02 –
D2  interpro 1.274774214 2.19 × 10−01 –
Glass 1.37508549 1.86 × 10−01 –
Bridge 0.723433495 4.79 × 10−01 –
AA  tree 1.539743226 1.41 × 10−01 –
Interpro tree 1.387863284 1.82 × 10−01 –

hAM-C vs. hAM-Disk

Ds1 aa 3.820856906 1.25 × 10−03 Reject�
Ds1  interpro 2.88040733 9.96 × 10−03 Reject�
Ds2  aa 0.872333251 3.95 × 10−01 –
D2  interpro 1.41793595 1.73 × 10−01 v
Glass 6.050119463 1.02 × 10−05 Reject�
Bridge 0.093329811 9.27 × 10−01 –
AA  tree 3.149423884 5.55 × 10−03 Reject�
Interpro tree 1.093361243 2.89 × 10−01 –

hAM-Cont vs.
hAM-Disk

Ds1 aa 2.460562637 2.42 × 10−02 –
Ds1 interpro 0.926591608 3.66 × 10−01 –
Ds2  aa 1.534480411 1.42 × 10−01 –
D2  interpro 0.303178962 7.65 × 10−01 –
Glass 5.314157269 4.73 × 10−05 Reject�
Bridge 0.685950055 5.01 × 10−01 –
AA tree 1.349933104 1.94 × 10−01 –
Interpro tree 0.465846437 6.47 × 10−01 –

The values where the algorithms perform the best are highlighted as bold.

Table 7
Comparison of algorithms based on Model Size.

Dataset hAM-Cont hAM-Disk Proposed hAM-C

Rules Terms/rules Rules Terms/rules Rules Terms/rules

Ds1 aa 24.00 ± 0.26 2.65 ± 0.06 24.60 ± 0.70 2.12 ± 0.15 17.90 ± 0.10 2.11 ± 0.04
Ds1  interpro 19.30 ± 0.47 5.14 ± 0.20 17.30 ± 1.16 3.68 ± 0.59 10.00 ± 0.52 4.71 ± 0.39
Ds2  aa 23.90 ± 0.23 2.61 ± 0.05 62.40 ± 0.97 2.95 ± 0.08 62.20 ± 0.25 3.03 ± 0.03
D2 interpro 48.60 ± 0.37 4.66 ± 0.22 45.40 ± 1.84 3.98 ± 0.47 51.80 ± 1.32 5.33 ± 0.87
Glass  25.90 ± 0.48 3.12 ± 0.07 29.10 ± 0.28 2.06 ± 0.03 34.00 ± 0.26 2.21 ± 0.03
Bridge  14.70 ± 0.21 1.98 ± 0.05 15.60 ± 0.31 1.93 ± 0.04 18.30 ± 0.15 2.09 ± 0.04
AA  tree 23.80 ± 0.25 2.69 ± 0.05 25.00 ± 0.00 2.16 ± 0.03 18.00 ± 0.00 2.12 ± 0.03
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and Interpro tree datasets where only 147 instances are available.
Considering the model size comparisons (given in Table 8), we

have observed that there is no significant difference between any
of these three algorithms and they are equally simplistic. However,

Table 8
Comparison based on two  tailed Wilcoxon SRT at 0.01 significance level (Model size).
Interpro tree 20.00 ± 0.39 5.86 ± 0.14 18.30

he values where the algorithms perform the best are highlighted as bold.

he two algorithms is zero (H0 = �1 − �2 = 0) which is rejected if
he observed p-value ≤ significance level. The smaller the p-value
he higher the difference between the means of the algorithms. In
ase, if the null hypothesis is rejected, a � symbol is placed as an
ndication that the first algorithm has performed significantly bet-
er than the second algorithm (e.g. in the hypothesis ‘algo1 vs.
lgo2’, algo1 is the first algorithm). Alternatively, � symbol is
laced, if the second algorithm has significantly outperformed the
rst algorithm. In Table 7, the results are summarized considering
he size of classification model in terms of total number of rules,
resent in the discovered rule list and the total number of terms in

 rule. The smaller the values of these two measures, the simpler
nd compact will be the classification model. The comparison for
he model sizes of the two techniques (in terms of average num-
er of rules) over all the datasets is conducted using nonparametric
wo tailed Wilcoxon signed rank test [35] at the significance level
f 0.01. The interpretation of the results presented in Table 8 can
e performed in the same way as discussed for Student’s t-test.

Table 5 illustrates that the proposed algorithm performs the
est with the avg. rank of 1.68 followed by hAM-Cont (avg.
ank = 2.0). hAM-Disk is the worst performing strategy with the

vg. rank of 2.31. hAM-C is also the most accurate algorithm
in terms of hF values) in six out of eight datasets. Whereas
n the other hand, hAM-Cont has performed better in Ds2 aa
ataset. For discretized data, hAM has achieved better hF values
6 4.27 ± 0.13 10.10 ± 0.10 5.26 ± 0.33

for Ds2 interpro dataset. However, when performed all pair wise
statistical significance comparisons (given in Table 6), we have
observed that the hAM-C has significantly outperformed the
hAM-Cont for Ds1 interpro dataset and declares to be statically
significantly better than the hAM-Disk in four out of eight datasets
(namely, Ds1 aa, Ds1 interpro, Glass, and AA tree datasets). On the
other hand, hAM-Cont has significantly outperformed the hAM-
Disk for Glass dataset. After observing the results presented in
Table 6, we  cannot find even a single case where the proposed algo-
rithm has significantly defeated by the competitors. It may  please
be noted that based on the assumption that the classification task
become difficult in case of less available examples per a class label,
it is encouraging that the proposed algorithm performed better
than the compared techniques for Ds1 aa, Ds1 interpro, AA tree,
Hypothesis Score (±) ranks p-Value Null hypothesis (H0)

hAM-Cont vs. hAM-Disk 21/15 0.7422 –
hAM-Cont vs. hAM-C 12/24 0.4609 –
hAM-C vs. hAM-Disk 27/9 0.2500 –
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Table 9
Comparison of hAM-C vs. J48 LCN based on hF values.

Dataset Our hAM-C J48 LCN

hP hR hF hP hR hF

Ds1 aa 0.71 ± 0.02 0.63 ± 0.05 0.66 ± 0.03 0.49 ± 0.02 0.77 ± 0.03 0.60 ± 0.02
Ds1 interpro 0.82 ± 0.03 0.78 ± 0.02 0.80 ± 0.02 0.58 ± 0.02 0.91 ± 0.02 0.70 ± 0.02
Ds2  aa 0.56 ± 0.03 0.51 ± 0.02 0.54 ± 0.02 0.68 ± 0.02 0.63 ± 0.02 0.65 ± 0.02
D2  interpro 0.78 ± 0.08 0.80 ± 0.06 0.79 ± 0.06 0.88 ± 0.01 0.88 ± 0.02 0.88 ± 0.01
Glass  0.84 ± 0.01 0.86 ± 0.01 0.85 ± 0.01 0.51 ± 0.01 0.92 ± 0.02 0.66 ± 0.01
Bridge  0.69 ± 0.02 0.70 ± 0.03 0.69 ± 0.02 0.28 ± 0.01 0.99 ± 0.01 0.43 ± 0.01
AA  tree 0.65 ± 0.04 0.49 ± 0.03 0.56 ± 0.03 0.52 ± 0.03 0.62 ± 0.04 0.56 ± 0.03
Interpro tree 0.75 ± 0.03 0.58 ± 0.02 0.65 ± 0.02 0.63 ± 0.02 0.81 ± 0.04 0.71 ± 0.02

Average 0.725 0.669 0.693 0.571 0.816 0.649

The values where the algorithms perform the best are highlighted as bold.
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Fig. 8. Overall performance for all datasets b

or Ds2 aa dataset, hAM-Cont has resulted in the most compact
lassification model and differences with the competitors is notice-
ble. This is based on the fact that the twenty-two continuous
ttributes (present in Ds2 aa) are when discretized has resulted in
he loss of information regarding the relationship between predic-
or attributes and the corresponding class labels. This observation
s valid as the model size of hAM-C is equivalent to that of the hAM-
isk where hAM-Disk has the only difference with hAM-Cont that it
as generated the results on discretized dataset. It also caused over-
tting problem as the classification model built is tool tailored to
he training set which resulted in lower generalization power based
n small hF values for dataset Ds2 aa (as observed from Table 5).

We also compare the proposed algorithm with the LCN based

trategy in terms of hF values by employing a baseline flat
lassification algorithms ‘J48’ (weka implementation of
4.5decision tree). As discussed earlier, a single J48 classifier is
rained over a specific individual GO term, separately. Specifically,

able 10
ime taken by each algorithm (in seconds) for tenfold experiment of a dataset.

Dataset hAM-continuous hAM-discretized Proposed hAM-C

Ds1 aa 97 384 67
Ds1 interpro 711 765 324
Ds2 aa 90 993 418
D2  interpro 2321 3370 1100
Glass 48 62 14
Bridge 47 48 17
AA  tree 137 181 60
Interpro tree 1268 344 116

Average 589.875 768.375 264.500
n hF values and model size (# of avg. rules).

the number of classifiers trained in this case are equal to the
number of classes – 1 (ignoring root) for a particular dataset. The
instances in training set are used to train the classifiers; such that
the positive examples consist of the examples containing the GO
term for which the classifier is being trained and all the remaining
examples are used to form the set of negative examples. The
testing is performed using test examples in a top-down manner.
Starting from the classifiers associated with class nodes at first
top-level, a test example is assigned for prediction. The classifiers
decide whether the given test example is positive or negative i.e.
associated or not associated with their GO terms, respectively.
For the classifiers, that predict the test example to be positive,
test example is further pushed downward (for prediction) to
their children classifiers (i.e. classifiers associated with the direct

decedents class nodes). This process is iteratively repeated to the
classifiers at most specific level of the class hierarchy until a test
example is predicted to be negative or a leaf node is reached. All

Table 11
Avg. ants used per rule in discovered rule list, Avg. prob. calls evaluated (resource
load).

Dataset Name Avg. ants used per rule in list Avg. total probability calls

Ds1 aa 1004.7 3984.511
Ds1 interpro 1369.8 5378.582
Ds2 aa 2157.9 20,215.82
D2 interpro 1290.9 136,489.1
Glass 629.2 2722.939
Bridge 804 2820.356
AA tree 1091.2 3914.220
Interpro tree 1920.0 5470.490
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he GO terms (for which positive responses are generated) are
elected as predicted consequent of the give test example. The
elected class labels are consistent with the given class hierarchy,
s it is not possible to select a child node when any of its parent is
ot already present in the selected class labels.

Based on average hF values (as presented in Table 9), hAM-C
ives the best average hF value of 0.693 across all the datasets
s compared to J48 LCN. In particular, hAM-C is better than the
48 LCN in four out of eight datasets and is defeated in three
atasets (namely, Ds2 aa, Ds2 interpro, and Interpro tree). The
omparison of Friedman test with post hoc Holm test based on
he hF values over all the datasets for all these four algorithms
s conducted again. The average ranks assigned to the algorithms
re reported as follows (in order of better performing algorithms
rst): (hAM-C = 2.125 < J48 LCN = 2.25 < hAM-Cont = 2.5625 < hAM-
isk = 3.0625). In Fig. 8, the overall performance of the algorithms

s plotted in terms of average hF values and average model size
cross all the datasets. As depicted in Fig. 8, hAM-C has obtained
he best average hF value bar, however, the model size of hAM-
ont is the most compact and simplistic one. This indicates that
dding the dynamic handling of continuous attribute in the classifi-
ation algorithm can make it simplistic and less prone to over fitting
hich leads to better generalization power. However, the results

f hAM-C are encouraging in terms of prediction performance and
herefore its incapability of handling the continuous attributes is
ot that much significant limitation. The total execution time took
y each algorithm for tenfold experiment is presented in Table 10. It
ay  please be noted that the algorithms are implemented in differ-

nt languages and therefore their reported execution time cannot
eaningfully be compared.
In Table 11, we have summarized the number of ants that are

sed to predict the set of rules and total probability calls evalu-
ted during the execution of the proposed algorithm. The higher
alues of both of these measures implies that the task of learning
he classification model was complex and therefore computation-
lly demanding. It may  please be noted that in the worst case, total
0,000 ants (500 iterations × 20 ants) may  be used to predict a sin-
le rule as per the parameter setting of hAM-C. However, the results
n Table 11 indicates that the original avg. ants used to find a rule
n the discovered rule list is much lesser than expected. The total
vg. probability calls are usually higher in the datasets where the
umber of terms are much larger in number, see e.g. in the case of
s2 interpro dataset where there are 155 number of attributes and

n turn the number of terms are also larger in number.

.3. Experimental investigation of algorithmic design choices

In order to explore the significance of the differences between
AM-C and hAM, we have analyzed several modifications of hAM-

 individually and in interplay, of which the average results
ver tenfold are given in Fig. 9 across all the eight discretized
atasets. Although, minute modifications in AntMiner’s might seem
traightforward, one has to consider that many of the features
re entangled with one another [22,36,37]. It is the combined
orking of all the features of our approach, such as the search

pace, correlation based heuristic and pheromone function, etc.,
hat yield the reported results. The key modifications are described
ext.

1) Symmetric/asymmetric pheromone matrix:  Our pheromone
matrix is asymmetric which encourages exploration of the
search space and discourages the premature convergence. For

hAM-C, we have conducted experiments in which pheromone
values on both the edges between two chosen consecutive
terms are updated. This pheromone update method yields
hAM-C-Sym (a symmetric pheromone matrix based hAM-C).
Fig. 9. Overall performance for all datasets based on hF values.

Experimental results, shown in Fig. 9, indicate a decrease in
performance when symmetric pheromone update is used. The
ants have a lesser chance for exploration and converge quickly
to a solution and it may  be an inferior one. For brevity, we
only discuss that the premature convergence is analyzed by two
statistics rather than presenting all the results: (1) the average
of ants used to construct the rule set has significantly decreases,
and (2) the count on early termination of the main loop of
hAM-C algorithm is quite high due to duplicate rule genera-
tion. Similarly, hAM is equipped with asymmetric pheromone
matrix (hAM-Asym) which caused it to perform slightly better
as compared to its original form, due to the same reasons.

(2) Learning same/different set of class labels: For hAM-C, we make
sure that all the ants learn the same set of class labels during an
iteration of the main loop. On the other hand, for hAM, each ant
might be learning a different set of class labels. For hAM, ants
are searching non-cooperatively, each with different goals; so
their experience if shared by means of pheromone, should not
be very helpful for search process; as this is against the main
essence of ACO. In this dimension, hAM-C is modified such that
each ant can learn different set of class labels (hAM-C-DSC i.e.
hAM-C with different set of class labels). Similarly, for hAM, all
the ants are enforced to learn common goal in order to mimic
cooperative learning behavior (hAM-SSC i.e. hAM with same set
of class labels). However, in order to incorporate this change in
hAM, three more modifications are required: (1) construction of
antecedent part should depends on prior commitment of con-
sequent part, (2) ACG and CCG must be connected in the same
way as done for hAM-C, and (3) a heuristic function that guides
in the view of committed consequent. These changes are incor-
porated in hAM-SSC and following heuristic function (modified
version of Eq. (9)) is used for this purpose:

�ij =
L∑

k=1

∣∣termj, classk

∣∣
∣∣termj

∣∣ (16)

Although not significant, an overall average improvement is
reported for hAM-SSC. hAM-C-DSC has resulted in slight degra-
dation in performance. With these experiments, we have
observed that updating the environment based on cooperative
learning with the common goal is more helpful.

(3) Correlation based heuristic function: In hAM, the construction
of rule antecedent part is independent from the construction of
rule consequent part (Ants in ACG do not communicate with the
ants in CCG). This is a serious limitation of hAM; as the ants have

no idea of class labels for which they are constructing the rule
(or the other way  around: the ants have no idea of antecedent
part for which the class labels are to be selected). With this
limitation, it is less likely to discover IF–THEN rules of good
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quality. For hAM-C, the two sub-graphs of hAM are connected so
that the construction of rule antecedent and consequent parts
become relevant. This is also mandatory for using the proposed
correlation based heuristic function which requires beforehand
consequent selection in order to construct the antecedent part
of a rule. Selection of terms based on the history of ant trail is the
main component of hAM-C that makes it perform much better
than hAM. In order to validate this observation, hAM-C heuristic
function is modified to the one given in Eq. (16) (hAM-C-uncorr.
i.e. hAM-C with uncorrelated heuristic function). According to
Fig. 9, significant degradation is observed in the average perfor-
mance of hAM-C-uncorr. We  cannot include correlation based
heuristic function in hAM, as this require several modification
in hAM (e.g. connected sub-graphs, prior consequent commit-
ment, common goal to learn, etc.), after which hAM will become
almost identical to hAM-C.

. Conclusion

In this article, we have presented a novel ant colony opti-
ization based single path hierarchical classification algorithm,

amed hAM-C. A detailed review of different types of hierarchical
lassification problems and different categories of corresponding
olutions is also provided to enhance the understanding regarding
he target problem and to facilitate the readers. Extending on the
deas of our previous flat classification algorithm AntMiner-C, the
AM-C is tailor to handle the hierarchical classification task with
oth tree (a class node can have single parent apart from root)
nd DAG (a class node can have multiple parents apart from root)
lass hierarchical structures. hAM-C employs a sequential covering
pproach and discover a single global classification model in the
orm of IF–THEN rules that are used in sequence during the test-
ng phase. The usage of a new correlation based heuristic which
akes into consideration the relationships between attribute-value
airs and class hierarchy, makes the hAM-C very well suited to the
nderlying problem.

The proposed algorithm is evaluated on six ion-channels
atasets (complex for classification task) related to protein func-
ion prediction and two publically available datasets. The empirical
omparisons are performed with a previously proposed single path
ierarchical classification algorithm (based on ACO) hAM and a
aseline decision tree (J48) approach extended to handle the hierar-
hical classification. According to the experimental results, hAM-C
s significantly superior to the competitors (based on several sta-
istical tests) in terms of prediction accuracy (based on hierarchical
-Measure) and gives comparable model complexities. We  have
lso presented the statistics about the resources used by hAM-C in
erms of ants used to find a single rule and total number of proba-
ility calls (more the calls the higher the computation complexity)
valuated during the execution of the algorithm. With these statis-
ics, we have concluded that hAM-C makes efficient and effective
sage of the assigned resources.

There are several future avenues in order to extend the proposed
echnique. First, it would be interesting to equip the algorithm with

 dynamic continuous variable handling mechanism, that would
ive more insights in the data being mined. It might also be useful
or reducing the size of classification model built by algorithm and
void the over fitting which will make the algorithm more robust. A
ifference based heuristic measure in the class hierarchy space (as
sed in CLUS-HMC) can be introduced which will extend the algo-
ithm for handling hierarchical multi-label classification problems.

t is also encouraging to testify the variations of new rule pruning
trategies or new rule evaluation measures. A new sequential cov-
ring approach introduced in cAntMiner-PB [36] is worth enough
o be investigated for optimizing the quality of the discovered rules.
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