Information Sciences 302 (2015) 33-49

Contents lists available at ScienceDirect ;

INFORMATION
Information Sciences e
journal homepage: www.elsevier.com/locate/ins _—
Detecting change and dealing with uncertainty in imperfect @ stk

evolutionary environments

Hasan Mujtaba**, Graham Kendall ¢, Abdul Rauf Baig ¢, Ender Ozcan®

2 Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad, Pakistan

b University of Nottingham, UK

€ University of Nottingham Malaysia Campus, Malaysia

d Department of Information Systems, College of Computer & Information Sciences, Al Inam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
€School of Computer Science, University of Nottingham, UK

ARTICLE INFO ABSTRACT

Article history: Imperfection of information is a part of our daily life; however, it is usually ignored in
Rece}ved 19 Jul_y 2013 learning based on evolutionary approaches. In this paper we develop an Imperfect Evolu-
Received in revised form 22 November 2014 tionary System that provides an uncertain and chaotic imperfect environment that pre-

Accepted 31 December 2014

Available online 13 January 2015 sents new challenges to its habitants. We then propose an intelligent methodology

which is capable of learning in such environments. Detecting changes and adapting to
the new environment is crucial to exploring the search space and exploiting any new
opportunities that may arise. To deal with these uncertain and challenging environments,
Evolutionary computation we propose a novel change detection strategy based on a Particle Swarm Optimization
Imperfect Evolutionary Systems system which is hybridized with an Artificial Neural Network. This approach maintains a
Particle Swarm Optimization balance between exploitation and exploration during the search process. A comparison
Learning of approaches using different Particle Swarm Optimization algorithms show that the ability
of our learning approach to detect changes and adapt as per the new demands of the
environment is high.

Keywords:
Artificial intelligence

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

An individual as a system shows intelligence with its actions, i.e. an intelligent individual reacts according to its surround-
ing and needs. The behavior of an intelligent individual is expected to be in coherence with the current situation which the
individual is experiencing. The individual should cater for the changes in its environment and objective(s) enabling itself to
make the appropriate decisions under perceptual and computational self-limitations [38]. Ideally, an intelligent entity
should be capable of detecting new information which becomes available at any time, extracting the relevant knowledge,
learning and reacting accordingly without the need of any third party intervention, thereby forming a dynamic relationship
with its surroundings. Our work deals with this relationship of an intelligent entity with its surrounding environment. We
argue that this relationship has been ignored in the past and our experimentation will show how this ignorance affects the
abilities of learning agents.

In this paper we deal with dynamic environments of imperfect information, i.e. the set of information changes over time.
The information available in the environment is incomplete because new information is constantly added to it or previous
information is removed from it. This information can be anything from the availability of new input parameters, changes in

* Corresponding author.

http://dx.doi.org/10.1016/j.ins.2014.12.053
0020-0255/© 2015 Elsevier Inc. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2014.12.053&domain=pdf
http://dx.doi.org/10.1016/j.ins.2014.12.053
http://dx.doi.org/10.1016/j.ins.2014.12.053
http://www.sciencedirect.com/science/journal/00200255
http://www.elsevier.com/locate/ins

34 H. Mujtaba et al. / Information Sciences 302 (2015) 33-49

the objective(s) of the agents or changes in the rules of the environment. The notion of imperfection in evolutionary envi-
ronments, which will be referred to as Imperfect Evolutionary Systems (IES) from this point forward, was presented by Ken-
dall and Su [25]. IESs are uncertain and chaotic (where the changes can occur abruptly at any time) dynamic environments
which provide a variety of challenges to the learning individuals residing in them. In simple words, in a dynamic environ-
ment of perfect information, we know what we do not know, whereas in an IES we do not know, what we do not know.

Learning in an IES is limited by the information available, any addition to this information opens up new avenues of learn-
ing and acquiring new skills become possible. Such imperfection of information is commonly found in real world problems. A
human player may play checkers and then look at a game of chess and decide to learn that game. The same player may focus
on other games or may learn a different task altogether. Investors in a stock market may change their strategies based on
new information that was not previously available to them. This new information maybe a change in the known indicators
that contribute to stock prices or it may add a new indicator previously unknown. The same investor may then leave for a
racing track and decide to make bets on a racing horse. These two problems would require analysis of a completely different
set of parameters. This ability to deal with imperfection also allows humans to deal with new problems or challenges in our
daily life and enables us to detect irrational or unnatural behavior in known scenarios. Humans are able to detect when
another player is cheating in a game but evolutionary strategies have had limited success in detecting such behavior.

We argue that the problem facing an intelligent entity is not only to excel in solving a particular problem but also the
ability to deal with any problem without any a priori information. Due to its uncertain and dynamic nature, an IES presents
new challenges to its habitants. These changes in the environment require its habitants to adapt according to the challenges
and modify behavior without the need to rely on any human assistance.

Traditional learning approaches fail to embrace the incomplete nature of an IES. We believe, this failure is mostly due to
ignorance of the learning strategy to its surroundings. They assume the environment to be perfect and complete; therefore
addition of new information is ignored in the evolutionary process. Another weakness of traditional approaches lies in han-
dling detection of changes. These techniques either rely on human intervention to provide information about the changes or
change detection is mostly done by reevaluating currently known solutions to see if their fitness values have changed or not.
Results of our experiments will show that this approach to detecting change limits the ability of a learning algorithm to per-
form in noisy and imperfect environments. Furthermore, a simple re-initialization of agents would not be enough to cater for
the updated information added to or removed from the situation. Re-initialization of best strategies also means to abandon
all learning done till that point and all computational cost till that point is wasted.

In our work we present a learning algorithm that overcomes all these problems. We propose learning to be a continuous
process, broken learning into three abstract and simplified sub-processes. Our learning strategy allows individuals to build a
dynamic relationship with their surroundings based on the information available to them. Whenever this information
changes, these individuals assess their performance and effectiveness of their strategies. If new information is found to be
relevant to an improvement in chances of survival then this information is added to knowledge pool otherwise it is
discarded.

Our results will show that this learning approach performs well in both perfect and imperfect environments. However,
our primary focus in this work has been to create intelligence that is capable of dealing with the incompleteness of any envi-
ronment. Our learning approach is able to handle abrupt uncertainties which are inherent in an IES. We will show how tra-
ditional learning approaches fail to meet the needs of an imperfect world. These approaches either ignore the availability of
new information or rely on humans to provide explicit information about the change.

Since learning in such an environment is an ongoing process, it requires a learning approach that is continuous in nature.
In this paper, we present such a learning approach that is able to seek its objectives in an imperfect world, detect changes
occurring in the environment and adapt accordingly. Our learning approach allows agents to acquire new skills that help
them survive the demands of their environment. These skills are acquired and updated by the agents themselves in an auto-
mated manner based solely on the information provided by the environment. No other information or guidance is provided
to the learning algorithm. This allows agents to learn and adapt as per the requirements of their environment (these require-
ments change over time without any warning) and thus improve their chances of survival in an automated manner, mim-
icking the behavior of naturally intelligent individuals. Instead of optimizing a particular skill for a particular environment,
we aim to develop an approach that allows agents to learn multiple objectives (or skills) on their own without any human
guidance.

In order to test our hypothesis of continuity of learning in uncertain environments we developed an IES to perform our
experimentation. This IES is modeled to handle uncertainty and imperfection of information and create new challenges for
its inhabitants. It constitutes of different entities both learning and non-learning. We believe that the abstract nature of the
environment would allow other researchers to add new entities and challenges to it. Fig. 1 presents a diagrammatic view of
this IES at different time stages. E” is the state of the Imperfect Evolutionary System at time T (represented by the large outer
circle). E" is defined by a set of information blocks. Any change in the environment will bring about a change in the search
space with the consequence of no point being the optimal for all the different states of the environment. New information for
inhabitants would present exploration opportunities (Fig. 1b), whereas removing previously available information would
render evolved strategies to be obsolete (Fig. 1c). Hence we can define E” in terms of the information available to its
inhabitants as in Eq. (1).

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 35

. ~ . T N -7 . N S
, | IT ' N ’ [I ! \ . ’ \ ~
v \ 1 1 \ ’ \ 1 1 \ . IT \ N
A 4 / ’
/ N S \ , N . N . ! 2 1 \
~ - ~ - \ , \ ’ \

, -- \ ’ == \ . . \

’ \ 1 \ // Se_ - \
1 \ ! \ \
f \ 1 PRk PEIaiN \ !/ \
| \ i ’ ~ ’ s\ \ 1 \

’ ’ 1
| ET ! ! | 1T \ ET+1 | IT 1 1 I \
. 1 | 3 4 1 I | ET+2 1
\ ! 1 N ’ AN ’ 1 1

\ l’ \ ~__-" ~_._-7 1 ! 1

\ s \ i \ h

\ AN / \ PRt / ‘\]

\ ’ \ , \ , ~ 1 P /
\ T \ \ ’ N ’ v . N ’
\ [’ \ IT \ , \ , N /
N \ 2 1 L N | 2 1 / \ | IT \ /
N N ’ . \ \ ’ ’ N 4 1 ’

Fig. 1. Imperfect Evolutionary System.
T T T T T T
E :{11,12717...,1,...,1,1} (1)

where n is the maximum number of information blocks that are available and I7 is the Ith information block available for the
individual of the IES at time T. We propose that each block of information is itself a set formed by the union of smaller blocks
of information about the environment. A block of information, denoted as I! is comprised of (i) available input, X!, (ii) effec-
tive rules, 1], (iii) objectives which the individuals must achieve, o], (iv) novice entities present in the environment, u], and
(v) intelligent entities present in the environment, a’.

IF=Yxudrfud ofud ufud a 2)
Vi Vi Vi Vi Vi

where ZV,-bT, represents the set of all relevant piece of information b visible to all the individuals i residing in all locations of
the environment at time T. The partially observable nature of the IES implies that different individuals will be affected by
different parameters at any given time. A change maybe local to an area and affect individuals residing in that locality while
others may be unaware of that information. Therefore individuals may be exposed to different sets of information. This
allows each individual in the environment to build its own perspective about the surroundings based upon its observational
space. Eq. (3) presents the perspective of an individual I} and the environmental variable !, currently present in its
observable space.

IZ:{U{...,U{U,ken} 3)

Eq. (2) presents the information from the environments perspective, while (3) presents it from the individual’s point of
view.

Details of this environment are presented in Section 4. It is our hope that this environment will serve as a test bed for
further research into IES. In the next section we will discuss related work. Section 3 presents our algorithm while Section 4
presents details of our test-bed IES. Experimental setup is detailed in Section 5 and results are presented in Section 6.
Conclusions and future work is discussed in Section 7.

2. Related work

Learning environments can generally be divided into two categories: static (steady) and dynamic (varying). Evolutionary
algorithms (EAs) are commonly used for solving computationally hard problems. EAs have been applied to both kinds of
environments. In static problems there is no change in the environment while solving a given problem instance. Generally,
an EA performs search using a population of individuals where each individual represents a candidate solution for a given
problem instance. These individuals interact with each other during the search process via evolutionary operators.

Dynamic environments (DE) are ever-changing environments, which can be observed in many real world problems where
a change can occur at any time while the search is in progress. Recently, there are a growing number of studies on dynamic
environments, such as, dynamic optimization problems (DOP). However, most of the studies assume that the DE is perfect.
By saying that an environment is perfect we mean that the set of information available at time Ti to Ti+n remains
unchanged. In a DE, change usually means modifying some environment variables. These environments are not based to
model the imperfection of the environment. An example of such an environment is the Moving Peaks Benchmark (MPB).
MPB is a well-known problem that provides a dynamic environment of perfect information, where the learning algorithm
has to locate a number of peaks present in the environment [5,7]. These peaks can change their spatial location, height
and slope. Any good learning strategy would have locate the peaks and then track their movements once the environment

36 H. Mujtaba et al. / Information Sciences 302 (2015) 33-49

changes. However, these environments were not modeled to support imperfection of the environment. For example, any
strategy working within MPB would always be aware of the surrounding environment and the challenges it presents. In
summary, by DE we mean a dynamic environment of complete and perfect information. While an uncertain, incomplete,
imperfect dynamic environment is referred to as an Imperfect Evolutionary System (IES).

Our learning algorithm is based on a Swarm based approach, Particle Swarm Optimization algorithm (PSO). A comprehen-
sive overview of PSO and its parameters is presented in [13]. Numerous studies have investigated the performance of PSO in
DE. Hu and Eberhart presented re-randomization PSO (RPSO) to deal with DE [19]. In RPSO, some particles of the population
are randomly relocated. Li and Dam [28] showed that restricting the information exchange and preventing convergence,
increases the diversity of the population and gave better performance when dealing with DE. Janson and Middendorf pro-
posed a hierarchical PSO [22], which showed improvements over the standard PSO for dynamic environments. Lung and
Dumitresc [33] used an approach that relied on two different swarms. One was responsible for maintaining diversity while
the other kept track of the optimum. Using the analogy of atomic particles, Blackwell and Bentley, presented their Charged
Swarms approach [6]. Their swarm comprised of charged and neutral particles. A cloud of charged particles, that repel each
other, orbits around the neutral nucleus. Blackwell et al. further extended this idea and presented a multi-swarm method
[4,5,7,8]. Du and Li [10], divided the particles into two parts, Gaussian local search was applied to one part while the others
patrol around them to track the optima. This approach was found to be less suitable for environments with more than two
local optima.

Li and Yang [26], proposed that the swarm be broken into two types; a parent swarm, which maintains diversity and
chooses promising areas for the search process and child swarms which explore these areas for optima [27]. The authors
later introduced a clustering particle swarm optimizer, which partitions the main swarm into several sub-swarms, each
searching for the optima [26]. Liu et al. proposed a Compound Particle Swarm Optimization approach [30] using composite
particles. Later they used a scattering operator to maintain diversity in these swarms [31]. Hashemi and Meybodi presented
their Cellular PSO in [17,18]. They partition the search space into cells, a group of particles then searches a cell for the optima
using its personal best and best from the neighboring cells. Kamosi [24] applied the idea of hibernation to multi swarm. A
parent swarm explores the search space and child swarms exploit promising areas found by the parent swarm. In the pro-
posed model, whenever the search efforts of a child swarm for exploiting an area becomes unproductive, the child swarm
hibernates. Results showed that the proposed algorithm outperforms other PSO algorithms, including similar particle swarm
algorithms for dynamic environments like mQSO [13] and FMSO [27].

Evolutionary computation [12,15,44] has also been used to study adaptive intelligence. Evolutionary learning has resulted
in generating behaviors and solutions which were, in most cases, unexpected or previously unknown. Fogel et al. [14] pres-
ent advances in developing adaptive intelligence in computer games using EC techniques. Other studies that have investi-
gated uncertain and changing environment in Al research are fuzzy logic [45,46], qualitative reasoning [41] and
commonsense reasoning [35,36]. Bayesian networks were used in [37].

In real world environments a wide range of uncertainties have to be considered in the evolutionary process. To model
uncertainty in our IES, we use noisy, time variant fitness functions [23]. Noise is an unavoidable part of most real life envi-
ronments. Therefore in a dynamic environment modeled to represent real life scenarios, noise cannot be ignored. The effects
of noise on the performance of evolutionary strategies has been discussed in [2,3]. In multi-objective optimization, two rel-
evant works are [21,40]. In our imperfect environment, noise is modeled via the effects of different environmental factors ¢
(e.g. the spawn location, number of creatures and terminals in the environment, etc.).

Time variant fitness functions are deterministic at any point in time but are dependent on time, t (4).

F(X) = f.(X) (4)

This dependence of the fitness function at time t, means that the optimum changes over time. Learning algorithms in such
environments must be able to track the movement of the optimum over time t. Our IES is divided into different phases
(detailed in Section 3). Each phase introduces or removes certain information into the environment and has its own corre-
sponding fitness function.

For our experimentation we use our algorithm and other approaches to train Artificial Neural Network (ANN) in an IES.
ANN based controllers have been used in the NERO game developed by Stanley et al. [39]. ANN controllers were also used by
Yannakakis et al. [43] in a simulated world called Flatland. They investigate agents controlled by an ANN with a fixed archi-
tecture and trainable weights. One of the major contributions of their work is the mechanism of finding the fitness of agents
by making them act out their strategies in the environment. We utilize the same technique for finding the fitness of our
agents. Yannakakis and Hallam have also evolved ANN controllers for the games of Pac-Man and Dead End [42]. Yet another
effort in this field has been made by Lucas for the game of Cellz [32]. Gaxiola et al. [16] have proposed a fuzzy based mod-
ification to the back-propogation algorithm for training of weights. A genetic algorithm based weight training approach has
been proposed by [34,35].

3. Coping with imperfection

To deal with the uncertainty of the environment our learning algorithm focuses on automating the learning process.
Human learning is a complex process involving countless sub-processes. However, for our approach we divide this learning

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 37

into three abstract sub-processes. We call these the 3’Es of learning (experience, exploration, exploitation). These processes
are fairly well-known in the Al community.

i. Experience: For every new problem faced, determine its relationship with the acquired knowledge and abilities, and
reuse previous learning.
ii. Exploration: Formulate a general strategy to deal with the situation based on currently available information.
iii. Exploitation: Refine the current skill set based on its effectiveness to deal with the challenges at hand.

Fig. 2 presents a diagrammatic representation of the underlying processes in this continuous learning approach. The con-
tinuity of learning is based on these processes for the discovery and exploitation of information (knowledge) in the current
environment and modifying behavior according to the surrounding environment. We use these processes to allow imperfect
individuals to understand and adapt to their settings, thereby ensuring their survival.

We now present our continuous Particle Swarm Optimization algorithm:

1. Initialize all parameters (N, R, cl, c2, rl, r2, w)
2. Create population of Imperfect Individuals i
3. Divide the population into S sub-swarms
4. For each S
a. Foreach i in S
i. Initialize a random strategy
Or
Select strategy fromarchive
5. For T iterations or while termination criteria not met

. Evaluate fitnessfiT

. Determine the best solution
. Adjust ep

. Update agents strategy

. After Ty force exploration
i. Sort Gon the basis of FI

ii. Determine Sy
iii. if it’s not improving, reinitialize randomly or from pool

O & 0 T o

else if Syp is not improving, reinitialize Sy
iv. After T, iterations
i. Choose candidate for experience pool
ii. If (!'full)
Add p.to experience pool
v. Invoke experience pool decay policy.
6. Go to step 3.

Experience

Exploration

Fig. 2. Continuous learning in an IES.

38 H. Mujtaba et al. / Information Sciences 302 (2015) 33-49

©P00[m);

Fig. 3. Architecture used for defining and connecting sub-swarms.

Our algorithm is based on the PSO algorithm and uses a multi-population approach by dividing the main swarm into
smaller sub-swarms. These sub-swarms are connected in a fixed-ring topology in which we have several completely con-
nected sub-swarms, isolated from one another except through their corner particles. Each corner particle is completely con-
nected with all the particles of two parent sub-swarms (Fig. 3). These particles act as a source of information transfer. Each
sub-swarm is of a fixed size (for our experimentation we used eight sub-swarms, five particles per sub-swarm). Assignment
to a sub-swarm is based on the index of a particle. Therefore particles cannot change their sub-swarms. This strategy for sub-
swarms allows the particles of a sub-swarm to reside anywhere in the search space instead of in close locality to other mem-
bers of their sub-swarms. This has two benefits:

i. Each individual shares its perspective of the surroundings with other members of the sub-swarm.
ii. Each sub-swarm acts independently of other sub-swarms; poorly performing sub-swarms do not affect others, while
better strategies are disseminated within the population via the connecting particles.

By employing the 3’Es of learning, our learning algorithm maintains diversity within these sub-swarms, and retains the
lessons it learns. Change is detected by monitoring the performance of the individuals and the algorithm decides when it has
to focus on exploration and when exploitation is required. The entire learning process takes place without relying on any
external guidance other than the stimulus provided by the evolutionary environment. The algorithm starts by initializing
all parameters necessary for the evolutionary process and an initial population of imperfect individuals is created. The initial
population is then divided into smaller sub-swarms. These sub-swarms are of fixed size and are formed on the basis of a
particle’s index number. The structure of our sub-swarms and their interconnections is shown in Fig. 3.

Individuals within these sub-swarms then develop strategies for dealing with the environment. Strategies are formulated
using information provided by the environment, e.g. input sensors, primary and secondary abilities etc. Depending upon the
number of inputs (sensors) chosen by the individual, they can formulate unique strategies allowing them to perform differ-
ent tasks with different skill levels. In other words what the agents can do depends upon what it chooses from what is pro-
vided by the environment. At this initial stage, these strategies may be random or chosen from the experience pool.

The appropriateness of an individual’s strategy is then determined by a fitness function defined by the environment. Our
focus, in this research, is to develop a learning approach which has the ability to automatically detect environment changes,
and to adapt by formulating suitable strategies. For this reason, the fitness function is never disclosed to the learning agents.
The learning algorithm only receives the fitness value of its current strategy and uses this evaluation to learn what the
demands of the unknown fitness function are and if they have changed or not. No other information about the environment
is explicitly shared with the individuals or the learning algorithm.

Based on the fitness values, the best strategy is determined. The population is motivated to adapt strategies similar to the
best strategies using an exploitation parameter e, (5). Ideally, an individual doing well should not jump far from its current
location in the search space and should explore its current locality for a better solution to the problem. An agent performing
badly should jump away from its current location to look elsewhere for a better solution. This parameter stops the popula-
tion from developing random strategies and encourages them to develop strategies similar to the ones that are currently suc-
cessful. Setting this parameter too strictly was found to adversely affect the diversity of the population.

oo)

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 39

The threshold value j is set to a constant (8 = 1.05),f5T is the fitness value of the best particle in the sub-swarm S at time T
and f,f is the fitness of the best particles from the entire population P at time T. Different sub-swarms may have different e,,
depending on the fitness of their particles.

An essential part of adaptive learning is automated change detection. To detect change in the environment, the learning
algorithm monitors its own evolutionary performance. After every T, iterations it diversifies its population of particles by re-
initialization of the worst performing sub-swarms. This selective re-initialization strategy allows the learning algorithm to
utilize poorly performing particles for exploring new opportunities and changes in the environment. In order to choose a
sub-swarm for re-initialization, we use accumulated fitness value F! (6), to determine the worst sub-swarm.

FF=>"f, (6)

FI is calculated by the sum of fitness f of all particles p belonging to the sub-swarm S over a period of T iterations. This allows
monitoring of a sub-swarm’s performance over a number of iterations. Any sub-swarm that is currently improving itself is
allowed to improve. When a sub-swarm has stopped improving and is currently the worst sub-swarm then it becomes an
ideal candidate for exploration. A sub-swarm that had high fitness in a previous state of the environment and now relies
on strategies that have become obsolete is forced to abandon its outdated methods and explore new opportunities. Only
the worst two sub-swarms are used in the exploration process and if both of these sub-swarms are improving then no can-
didate is selected for further exploration. This limit avoids the algorithm from becoming a random search and to focus on
improving current strategies via evolution. Tables 1 and 2 present the parameter values involved in this continuous learning
process. Due to the imperfect nature of the environment, inputs and outputs (or any other parameter) can change at any
time, without warning. In case a certain input is no longer available in the environment, individuals relying on that input
will have to abandon their strategies and formulate new ones. In this manner these individuals build a dynamic bond with
their surrounding environment and constantly search for any changes that may have occurred. At each step their actions are
evaluated. This evaluation guides the agents as to whether they have selected the right strategy or not.

After every T. a candidate is chosen to be added to the archive. Every T, iterations, the best strategy found by the pop-
ulation is added into an experience pool. This experience pool serves as a historical archive for social evolution. An individual
can adopt strategies from this experience pool. Since each individual has its own perspective of the environment based on
their locality, this pool can be further subdivided into smaller pools where each pool only stores the best strategies from a
selected portion of the environment. We do not allow duplication in the pool because it was experimentally found to be less
desirable. While adding to the socio-experience pool two different strategies were tested.

i. After T, iterations, sort individuals on the basis of fitness and pick the best one if it is above a certain threshold.
ii. Add the best solution to the pool after T, iterations regardless of its fitness values.

The termination criteria for the algorithm could be a predefined number of iterations or a fitness threshold value.

Finally we, increment the decay value. This decay value is used to determine how old a strategy is (the oldest strategy will
have the highest decay value). If the pool is full then, for removal of strategies from the socio-experience pool, we reference
this decay value.

Table 1
Parameters used for normalization in fit-
ness functions.

mt" 250
md" 125
me” 100
Table 2
Learning algorithm parameters.
P 20
G, G 1
w 1
r, 2 0-1
Vimax 0.05-1
T 20
T, 20
Ty 20
r 5

E 300

40 H. Mujtaba et al. / Information Sciences 302 (2015) 33-49
4. Wonderland - an imperfect evolutionary environment

We now detail the imperfect De we developed to model imperfection and uncertainty of information. DEs have been clas-
sified into different types based on their characteristics and numerous works have presented different categorizations. DE
can be categorized on the basis of how often change occurs, the magnitude of change and the movement of optima. Classi-
fication systems based on the trajectory of optima and direction of change and have been used by [1,11,19]. For our IES, we
use the classification proposed by [9]. It provides four characteristics of change:

i. Predictability of change, i.e. the correlation between changes.
ii. Frequency of occurrence of change.
iii. Magnitude of change.
iv. Repetitiveness of change, whether optima returns to its previous location or close to it.

We designed different challenges for the learning individuals based on these criteria. These challenges are modeled used
different phases in our environment. We call our IES, Wonderland and it is a predator-prey environment, similar to the one
used by [43] and [32]. It is a 2D world with no boundaries (agents crossing over the edge reappear on the other side) and
consists of two types of entities; individuals (learning) and artifacts (non-learning). An individuals’ strategy is represented
using ANNs. Each strategy is formulated using inputs available in the environment. A change in the environment is repre-
sented as an environmental phase.

We now explain different kinds of entities and phases used in our environment.

4.1. Entities in the environment

4.1.1. Humanoids

Humanoids are the basic evolvable individuals within the environment. These humanoids are placed in the environment
without any a priori information. They must formulate a strategy by choosing a set of inputs. The environment requires
humanoids to learn object-avoidance and target-achievement skills without explicit information about which objects are
to be avoided and which objects are to be targeted.

Each of the individuals decide to use a set of ANN inputs p! available from the set of inputs. p_ is defined as those inputs
used by the individual which were available from the set of inputs x allowed for species a, at time T (7).

PL, = (X100 X, (7)
For our current series of experimentation we restrict the ANN architecture as described in Section 4. This architecture was
experimentally derived and is similar to the one used by Yannakakis et al. [43].

4.1.2. Terminals
These are non-evolving stationary points on the terrain. Once a humanoid reaches (i.e. a humanoid reaches the pixel loca-
tion of the terminal) the terminal, it is considered to be captured and a new terminal point is spawned at a random location.

4.1.3. Creatures

These are non-evolving agents in the environment. Their behavior is scripted. Creatures attack or avoid humanoids based
on different phases of the environment. Due to their dual nature they play a unique role in the environment being both prey
and predator at different times. Due to their scripted nature they always use the shortest distance between them and the
closest agent. The number of pixels visible to a creature is always smaller than the number of pixels visible to the agents.
This is done to give both parties a fair chance.

4.2. Phases in the environment

The following environmental phases are used in the experimentation presented in this paper.

4.2.1. Acquisition
In this phase the humanoids learn to capture as many terminal points as they can within a limited time period. The fitness
function is based on how many points have been captured (8).

t) (8)

T .
Fi = min <1.W

where F! is the fitness of the ith humanoid and is calculated as the minimum of 1 and the total number of terminal points
captured by the humanoid ¢! divided by the maximum terminals available for capturing, mt”, at time T.

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 41

4.2.2. Survival

In this phase a new entity called Creatures is introduced into the environment. These creatures hunt for humanoids.
Humanoids cannot fight back and must choose to run away. The addition of creatures requires a drastic change in human-
oids’ survival strategy and individuals will have to learn to avoid death by a creature (9).

T T
F{nmx(&ﬁ@—;ﬂ> 9)
md

where md" is the maximum number of time humanoids are allowed to be killed by the creature and d is the number of
times humanoid i was killed by the creatures.

4.2.3. Hunting

This phase is the opposite of the Survival phase. Humanoids are allowed to fight back by learning to capture creatures.
Capturing a creature requires teamwork. Creatures will try to avoid humanoids in this phase while two or more humanoids
must trap a creature to capture it (i.e. two or more individuals must come within a Euclidian distance of 1 pixel to the crea-
ture). Fitness is determined by the number of creatures captured (10).

FT — min (1,°L (10)
i "meT

where meT is the maximum number of creature captures allowed and e is the number creatures captured by the humanoid.
Whenever two or more individuals cooperate to capture a creature this number is updated for all the humanoids who par-
ticipated in the capture.

Combinations of these objectives can be used to develop more complicated fitness functions. One example of such a com-
plex learning activity could be (11).

T T T

Here, fitness is the summation of total creatures captured feiT, number of collisions madefc,-T (i.e. number of times an indi-
vidual bumped into other members of its specie) and number of terminals captured ft,-T by the humanoid, divided by n (num-
ber of factors involved in fitness calculation).

The difficulty of tasks varies between different phases. In order to establish a common ground for comparison all fitness
values are normalized, allowing a fair comparison among learning from different phases or tasks. The maximum values used
in the normalization of fitness were determined experimentally using individuals whose behavior was scripted to meet the
demands of the environment. Since the location of the optima is unknown for these problems, the values from scripted
agents were used to compare the quality of results from learning algorithms (Table 1).

There are two levels of change occurring in the environment. The minor changes (movement of creatures, relocation of
terminals, and movement of humanoids) are less severe in magnitude but occur very frequently (i.e. they change in every
iteration). Major changes are the transition of one phase to another. Successful learning algorithms must be able to generate
robust solutions that deal with the chaotic minor changes, yet are adaptive enough to deal with major changes.

5. Experimental setup

In an imperfect environment, the performance of an individual i depends on two factors, its learning ability &, and impact
of environmental factors ¢ (e.g. the spawn location, number of creatures and terminals in the environment, etc.), at time T.
The effects of these external factors cause a noisy fitness evaluation i.e. the same strategy can have different fitness values on
subsequent evaluations. The time varying phase changes and the influence of ¢/ gives rise to a new problem. How do we
determine if the humanoids have learned anything about their environment?

To answer this, we opted for a competitive co-evolutionary approach. The best strategies found by each algorithm com-
pete against each other. For each experiment multiple runs (at least 10) were made to validate the conclusion of the results.
Figures show the average values of these runs. Artificial Neural Networks were used to interface the learning individuals (or
particles) with the environment. Each learning individual tunes the weights of an ANN which represents the strategy for that
individual. Using a common ANN architecture for all algorithms, we test only on their change detection and adaptive learn-
ing abilities, allowing for a fair comparison. The ANN architecture used for experimentation comprises 12 input neurons, 1
hidden layer with 5 neurons and 2 output neurons. Inputs comprise of distance and angles of the z (z = 2) closest terminals,
humanoids and creatures. A sigmoid activation function is used. The two output neurons give the step size and the direction
(or angle) in which to move.

To deal with noisy fitness functions, the expected fitness function is often approximated over a number of random sam-
ples [23]. In our setup noise is generated by the effects of environmental parameters /. To minimize these, for each of these
particles we create N clones. A clone represents the strategy formulated by its parent particle. Each clone takes E steps in the
environment, and its movement and interactions are monitored. The fitness of the particle (or the Individual) is then calcu-
lated based on these interactions (using the formulae mentioned in Section Il B). The values of all the clones are summed to

42 H. Mujtaba et al. / Information Sciences 302 (2015) 33-49

represent the value of the parent particle e.g. the number of terminals reached by a particle during an iteration is the sum-
mation of the number of terminals reached by all its clones in E steps of that iteration. This minimizes the effect of random
elements of the environment such as; agent spawn locations, proximity to creatures, terminal placement etc., in fitness cal-
culation. The algorithms used in our experimentation are HMSO [24], DMS PSO [29], and an lbest version of RPSO [13,20]. The
Ibest RPSO (we will call it RL-PSO) was given an unfair advantage over the others as it was informed of all the phase changes
whenever they occurred and told which factors should be ignored and which ones considered. In this way, RL-PSO mimics
the behavior of an ideal change detection and adaption strategy.

In all experiments, the same parameter values are used for all algorithms. Each algorithm faces the same phase change at
the same iteration. This removes all other factors and focuses on the ability of each algorithm to deal with the change in the
IES allowing for a fair comparison.

6. Experimental results and discussion

First, we test the learning ability of the algorithms in a perfect environment and gradually move towards an imperfect one
(i.e. increase the complexity of the problem).

6.1. Perfect environment

To test the learning ability of all algorithms in a stable environment, they were allowed to train humanoids in a stable,
unchanging environment. We used the environment states along with their fitness function mentioned in Section 3. Tables
4-9 give details of the performance of each algorithm in different scenarios.

Fig. 4 presents the learning curve of each approach for this learning activity showing the terminal acquired (Fig. 4a), num-
ber of deaths (Fig. 4b), and successful creature captures (Fig. 4c). The best solutions found competed against random solu-
tions and they outperformed the random ones, proving their ability to learn in a perfect environment. Fig. 5, shows how
successful each strategy was compared to others in a perfect environment. It is clear from these results, that the best results
were achieved by RL-PSO, because it was informed about all changes. Our CL-PSO came in second, with results that are close
to those of RL-PSO. This shows our learning approach can successfully learn in a perfect environment. Results from DMS and
HMSO were far below our strategy. These algorithms were confused by the constant chaotic changes and the effects of envi-
ronmental parameters. Still these algorithms performed better than random search. The jagged learning curve of our CL-PSO
is the result of constant exploration of new strategies and reinitializing of the worst sub-swarm. The learning curve of other
approaches is smoother because in a perfect environment the best strategies are only improved and do not become obsolete.

6.2. Coping with imperfection

Next we test the learning ability of these algorithms in an imperfect and changing environment. For this test, each
algorithm was allowed to learn about the environment for a number of iterations after which a phase change was intro-
duced. We started with phase 1 then transitioned the environment into phase 2 and then phase 3 (each phase change
was introduced after every 1000 iterations). Details of these phases are in Section 4.2.

Table 3
Switching between environment states for
socio-experience comparison.

Iterations Environment phase
0-300 Survival phase
300-600 Acquisition phase
600-900 Survival phase

900-1200 Hunting phase
1200-1500 Survival phase
1500-1800 Acquisition phase
1800-2100 Hunting phase

Table 4
Fitness values in perfect environment - acquisition
phase.
DMS HMSO CL-PSO RL-PSO
Max 0.236 0.476 0.615 0.713
Avg. 0.217 0.281 0.553 0.658

Min 0.070 0.136 0.068 0.058

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 43

Table 5
Fitness values in perfect environment - survival phase.

DMS HMSO CL-PSO RL-PSO

Max 0.280 0.440 0.560 0.687

Avg 0.137 0.211 0.396 0.529

Min 0.000 0.000 0.000 0.000
Table 6

Fitness values in perfect environment - hunting phase.

DMS HMSO CL-PSO RL-PSO

Max 0.090 0.120 0.156 0.175
Avg. 0.076 0.082 0.141 0.163
Min 0.001 0.000 0.025 0.014
Table 7
Performance in acquisition phase.
DMS HMSO CL-PSO RL-PSO
Max 59.00 104.13 153.75 178.25
Avg. 54.17 62.12 138.16 164.62
Min 17.50 17.00 17.00 14.38
Table 8
Performance in survival phase.
DMS HMSO CL-PSO RL-PSO
Max 630.88 620.50 988.38 1110.88
Avg. 466.63 323.14 200.62 75.04
Min 90.00 69.25 55.00 39.13
Table 9

Performance in hunting phase.

DMS HMSO CL-PSO RL-PSO

Max 9.00 11.71 15.63 17.50
Avg. 7.64 8.08 14.14 16.27
Min 0.13 0.17 2.50 1.38

The results of this experiment are shown in Fig. 6. Since in the first two phases of the environment the humanoids are not
given any information about how to capture the creatures hence for those two stages the number of captures remains at
zero. Table 10 details the average values of the best individuals determined by each algorithm on multiple runs.
Table shows that all algorithms started to learn terminal acquisition, however, HMSO and DMSPSO were unable to deal with
the incomplete and noisy nature of the environment and their resulted in poorer performance than the other two algorithms
which had a better change detection scheme. Since human guidance and explicit information about the surrounding envi-
ronment was available to RL-PSO its performance is better than all algorithms. Therefore the results of RL-PSO should be
considered as ideal i.e. something that a human would come close to achieving. Our continuous learning algorithm came
in close second, showing its ability to deal with the imperfectness of the environment without any explicit information about
the surroundings. Our algorithm detects the current state of the environment based solely on the information provided by its
surrounding and Fig. 6(a) shows how the learning for the traditional algorithms halts after the introduction of change and
their failure to respond to changes in the environment. In contrast, the learning curve of RL-PSO and our PSO approach show
that they respond to the changes in their environment. Whenever the environment changes, learning individuals reflect
these changes and adapts by formulating suitable strategies to ensure survival.

In an imperfect environment, with every phase change, the fitness of the best individuals should decrease because the
previously best strategies have now become obsolete. This must be automatically detected by the learning algorithm to
match the changes that have occurred in its surrounding environment. If the algorithm successfully detects the changes then
it must reevaluate its best strategies to see if their previous fitness values are valid or not. Because RL-PSO was explicitly
informed about these changes, its curve perfectly reflects the changes of the environment. Our automated change detecting

44

Hunting Fitness

H. Mujtaba et al./ Information Sciences 302 (2015) 33-49

DMS HMSO

CL-PSO -~ RL-PSO

Acquisition Fitness

1 201 401 601 801 1001
Iterations

(a) Learning curve in Acquisition Phase

DMS ———HMSO ——CL-PSO - - RL-PSO

Survival Fitness

1 201 401 601 801 1001
Iterations

(b) Learning curve in Survival Phase

DMS HMSO ——CL-PSO - - RL-PSO

0.2
0.15
0.1

0.05

1 201 401 601 801 1001
Iterations

(c) Learning curve in Hunting Phase

Fig. 4. Learning in a perfect environment.

180
160
140
120
100

80

60

—= E
Pl

RL-PSO CL-PSO DMS-PSO HMSO

40

No. of Terminal Acquired

==
¥ _
%
:

20

++H+H%++H»+|+|»—D:l

Fig. 5a. Performance in acquisition phase.

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 45
1400
T
1200 T ‘
+ jrr |
2 1000 + : $
S 800 | [
) I
S 600 2 |
S !
Z 400 I
200 ’__‘—‘
i —
0 ! . . .
RL-PSO CL-PSO DMS-PSO HMSO
Fig. 5b. Performance in survival phase.
18+
P —
ul =+ %
S 1l
; 12 § +
B 10}
S *
S sl R
s Or * + 1
z nt +
| RS
ok ‘ 1
RL-PSO CL-PSO DMS-PSO HMSO
Fig. 5¢. Performance in hunting phase.
HMSO ------- DMS-PSO ——CL-PSO - - - - RL-PSO
7
7]
Q
=
=
[
1 1001 2001 3001
Fig. 6. Learning in an imperfect evolutionary environment. Phase change was introduced every 1000 iterations.
Table 10
Performance in imperfect environment (avg. of best individuals).
DMS HMSO CL-PSO RL-PSO
Phase 1 Terminals 79.65 61.07 156.40 157.04
Deaths 1070.55 567.90 809.03 709.57
Captures 0.00 0.00 0.00 0.00
Phase 2 Terminals 89.25 76.25 40.29 13.14
Deaths 998.25 523.07 187.82 123.49
Captures 0.00 0.00 0.00 0.00
Phase 3 Terminals 89.25 47.78 40.47 24.28
Deaths 998.25 332.76 140.45 22.68
Captures 0.00 1.80 7.20 15.16

PSO follows closely, whereas the other algorithms do not consider the phase changes and maintain a smooth learning line.
The smoothness of their fitness curve shows that the best values, once achieved, are never updated to match the phase

changes in the environment.

46 H. Mujtaba et al. / Information Sciences 302 (2015) 33-49
6.3. Dealing with repetitive chaotic imperfect environment

In this experiment, the phase changes occur even more frequently (Table 3). The environment reverts back to a previous
state to test the ability of algorithms to deal with repetitions in a chaotic imperfect environment. The fitness learning curve is
shown in Fig. 7. Results show that our CL-PSO responds well to the change in the environment (as evident by the rise and fall
in the average fitness value). Other learning approaches fail to respond to the chaos in their surroundings and instead only
focus on improving their fitness for the first phase. They never adapt to the changes and their smooth learning curve shows
that they fail to detect when their best strategies become obsolete.

6.4. Adding a new dimension to learning

In all the tasks, the humanoids had to learn but they only had to focus on one thing at a time. This fact is highlighted by
the statistics shown in Fig. 8. The statistics represent the accumulated values of the most successful strategies found in 3000
simulations. It is clear from Fig. 8 that while a strategy performs well in its own area of specialty, its performance in other
dimensions is usually poor. In an imperfect environment, it is possible that new dimensions to the problem may be added (or
subtracted) from the current learning ability at any time without any forewarning. Any learning algorithm that deals with
imperfection must be able to deal with this situation.

To test this ability we started the learning with an acquisition phase for 1000 iterations, the fitness evaluated by Eq. (5).
After the initial 1000 iterations, a new dimension to the problem was introduced as in Eq. (12).

- (min (1,%) + max (O, mme(;Td‘T»
N 2

Here FiT is the fitness of the ith humanoid which is the average of two entities. t7 is the number terminal points captured
by the humanoid mt" the maximum terminals allowed for capturing at time T. md' is max number of deaths allowed and diT
is the number of times humanoid i was died.

(12)

- - =- Random Search HMSO ----- DMS ———CL-PSO ---eeeeee RL-PSO

0.7 -
0.6 -
0.5 -
0.4

0.3 A
0.2 A
0.1 A

Fitness

1 301 601 901 1201 1501 1801 2101

Fig. 7. Learning in a chaotic imperfect evolutionary environment. Phase change was introduced every 300 iterations. Random search has also been plotted
to show how a completely random search for best strategies behaves in a chaotic environment.

10000 M Terminals Deaths m Captures

8000

6000

4000

2000

St-Terminal

St-Deaths
St-Captures

Name of Strategy

Fig. 8. Comparing performance of different strategies. X-axis shows name of strategy, St-Terminal is the best strategy found for acquisition phase, St-Deaths
for survival phase and St-Captures for hunting phase. Y-axis shows the number of terminals acquired, deaths and hunts made by a strategy.

H. Mujtaba et al. / Information Sciences 302 (2015) 33-49 47

- - - - Random Search HMSO --- DMS ———CL-PSO ------ RL-PSO

Fitness

1 1001 2001
Iterations

Fig. 9. Adding new dimensions to learning. Fitness function was modified after 1000 iterations.

The results of this experiment are shown in Fig. 9. In the first part of the experiment (0-1000 iterations) humanoids
ignore their deaths. In the latter half of the experiments (1000-2000 iterations) they now have to learn to maximize the
number of their terminal acquisitions and also minimize their number of deaths. Whereas in the first phase the focus is
on achieving a target, ignoring deaths, in the second phase learning algorithms have to balance the two factors.

The new state of the environment is more complex than the previous one. Terminals must be captured while running
away from the creatures, doing so will decrease the numbers of terminals captured. RL-PSO and our CL-PSO both respond
to this change in the environment and try to balance the two factors, while DMS and HMSO ignore this phase change and
instead focus on terminal capturing, which is why their fitness more or less remains the same after the change.

7. Conclusion

An imperfect environment constantly presents new challenges to its inhabitants. Individuals residing in such an environ-
ment are called imperfect individuals. They must realize the imperfection of their environment and adapt accordingly. In this
paper, we have presented a continuously learning algorithm that enables individuals to learn and survive in an imperfect
environment. These individuals form a dynamic relationship with their surroundings. Whenever a change occurs in the envi-
ronment these individuals detect it and modify their strategies, thereby improving their chances of survival. Their ability to
learn does not depend upon any human intervention. These individuals form a diverse and active society where each mem-
ber contributes to the improvement of the collective. Poorly performing members of the society are utilized in exploration
while better members are used in exploitation of the surroundings.

We have developed an environment to test the learning ability of our algorithm. The environment is uncertain and chang-
ing in nature. This environment has different states and a change in a state is transmitted via a fitness function. We believe a
similar setup can be used as a test-bed for future research in imperfect environments. These environments represent scenar-
ios similar to the ones we face in our everyday lives, where an individual has to deal with different challenges, some of which
are not known in advance. Our aim was to develop an environment that can be extended to different problems and domains.
Our IES can be used by other researchers to investigate the performance and ability of different learning algorithms when
presented with diverse challenges of imperfect information.

Our results show that the self-motivated learning ability of our continuous learning approach is successful in detection
and adaptation to the demands of the environment. Our agents not only adapted to survive in their new environment but
also exploited any weakness present in their surroundings. We do not claim that the learning ability of these agents is opti-
mal (or that the strategies they evolved are optimal strategies). It was, however, demonstrated experimentally that the
agents efficiently learned to deal with changes in the environment within the given time. We conclude that this algorithm
demonstrates an adaptive intelligence based behavior, which can be applied to other complex problems.

We believe that IES are the logical extension of current research in dynamic algorithms. These environments can be used
to model real life scenarios. These environments are modeled to accommodate incompleteness of information, thereby
allowing new information to be added at any stage of evolution. In this regard the environment becomes a part of the evo-
lutionary process. This nature of the environment to support different kinds of information can be scaled to test different
problems of various domains, e.g. testing Game Al algorithms, developing Al for exploration of unknown environments,
developing testing scenarios for training of employees in various capacities, etc.

Our learning continuous learning approach has shown its ability to handle incompleteness of information. This learning
approach is aimed at developing Al that mimics human behavior. Such learning strategies can especially be applied to video
games where scripted behaviors become predictable. A learning approach based on our research would allow the game to
adapt and behave according to the actions of the players. This work could also be extended to deal with cheaters who exhibit
behavior that cannot be predicted in advance using traditional scripting based methodologies. Example uses of such learning
agents would improve the replay ability of games by detecting cheaters, or generating behaviors that adapt to the choices
made by a human player and coming up with strategies that would challenge and involve him/her.

48 H. Mujtaba et al. /Information Sciences 302 (2015) 33-49

There are questions that still need to be explored. For example, can we apply the algorithm to problems in which even the
structure or representation of the problem is unknown. In such a problem even the particle representation would be depen-
dent upon the individuals of the environment. How would they handle this? It would also be interesting to have continu-
ously learning species compete against one another for survival. We are currently working on the integration of better
neuro-evolution strategy to the framework so that it can attempt to optimize its solutions as per the requirements. Better
algorithms for the addition and removal from the experience pool are also being investigated. Application of this self-moti-
vated, independent, multi-dimensional continuous learning framework upon other practical problems would be interesting.

Acknowledgement

The authors would like to thank the Higher Education Commission of Pakistan for funding this research work. We would
also like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

References

[1] P. Angeline, Tracking extrema in dynamic environments, in: Evolutionary Programming VI, Lecture Notes in Computer Science, vol. 1213, Springer,
Berlin, 1997, pp. 335-345.
[2] D. Arnold, Noisy Optimization in Evolution Strategies, Kluwer, Norwell, MA, 2002.
[3] H. Beyer, Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice, Comput. Methods Appl. Mech. Eng. 186 (2000)
239-267.
[4] T. Blackwell, J. Branke, Multi-swarm optimization in dynamic environments, in: Applications of Evolutionary Computing, Lecture Notes in Computer
Science, vol. 3005, Springer, Berlin/Heidelberg, 2004, pp. 489-500.
[5] T. Blackwell, Swarms in dynamic environments, in: Genetic and Evolutionary Computation — GECCO 2003, Lecture Notes in Computer Science, vol.
2723, 2003, pp. 1-12.
[6] T. Blackwell, P. Bentley, Dynamic search with charged swarms, in: Genetic and Evolutionary Computation Conference, New York, NY, USA, 2002, pp.
19-26.
[7] T. Blackwell, J. Branke, Multiswarms, exclusion, and anti-convergence in dynamic environments, IEEE Trans. Evol. Comput. 10 (4) (2006) 459-472.
[8] T. Blackwell, J. Branke, X. Li, Particle swarms for dynamic optimization problems, in: Swarm Intelligence, Natural Computing Series, vol. Part II, 2008,
pp. 193-217.
[9] J. Branke, Evolutionary Optimization in Dynamic Environments, Kluwer, 2002.
[10] W. Du, B. Li, Multi-strategy ensemble particle swarm optimization for dynamic optimization, Inf. Sci. 178 (15) (2008) 3096-3109.
[11] R.Eberhart, Y. Shi, Tracking and optimizing dynamic systems with particle swarms, in: Proceedings of the IEEE Congress on Evolutionary Computation,
Vol. 1, 2001, pp. 94-100.
[12] A. Eiben,]. Smith, Introduction to Evolutionary Computation (Natural Computing Series), Springer, New York, 2003.
[13] A.P. Engelbrecht, Fundamentals of Computational Swarm Intelligence, John Willey & Sons, 2005.
[14] D. Fogel, A. Blair, R. Miikkulainen (Eds.), Special issue on Evolutionary and Games, IEEE Trans. Evol. Comput., vol. 9(6), December 2005, pp. 537-539.
[15] D. Fogel, Evolutionary Computation: Toward A New Philosophy of Machine Intelligence, second ed., IEEE Press, Piscataway, NJ, 2000.
[16] F. Gaxiola, P. Melin, F. Valdez, O. Castillo, Interval type-2 fuzzy weight adjustment for back propagation neural networks with application in time series
prediction, Inf. Sci. 260 (2014) 1-14.
[17] A. Hashemi, M. Meybodi, A multi-role cellular PSO for dynamic environments, in: 14th International CSI Computer Conference, Tehran, Iran, 2009, pp.
412-417.
[18] A. Hashemi, M. Meybodi, Cellular PSO: a PSO for dynamic environments, Adv. Comput. Intell. Lect. Notes Comput. Sci. 5821 (2009) (2009) 422-433.
[19] X. Hu, R. Eberhart, Tracking dynamic systems with PSO: where’s the cheese, in: Proceedings of the Workshop on Particle Swarm Optimization,
Indianapolis, IN, USA, 2001, pp. 80-83.
[20] X. Hu, R.C. Eberhart, Adaptive particle swarm optimization: detection and response to dynamic systems, in: IEEE Congress on Evolutionary
Computation, Honolulu, HI, USA, 2002, pp. 1666-1670.
[21] E. Hughes et al, Evolutionary multiobjective ranking with uncertainty and noise, in: E. Zitzler et al. (Eds.), Evolutionary Multi-Criterion Optimization,
LNCS, vol. 1993, Springer-Verlag, Berlin, Germany, 2001, pp. 329-343.
[22] S. Janson, M. Middendorf, A hierarchical particle swarm optimizer for noisy and dynamic environments, Genet. Programm. Evol. Mach. 7 (4) (2006)
329-354.
[23] Y. Jin,]. Blanke, Evolutionary optimization in uncertain environments—a survey, IEEE Trans. Evol. Comput. 9 (3) (2005) 303-319.
[24] M. Kamosi, A. Hashemi, M. Meybodi, A hibernating multi-swarm optimization algorithm for dynamic environments, in: Second World Congress on
Nature and Biologically Inspired Computing (NaBIC), Tehran, Iran, 2010, pp. 363-369.
[25] G. Kendall, Y. Su, Imperfect evolutionary systems, IEEE Trans. Evol. Comput. 11 (3) (2007) 294-307.
[26] C.Li, S. Yang, A clustering particle swarm optimizer for dynamic optimization, in: IEEE Congress on Evolutionary Computation, 2009, pp. 439-446.
[27] C.Li, S. Yang, Fast multi-swarm optimization for dynamic optimization problems, in: Fourth International Conference on Natural Computation, Jinan,
Shandong, China, 2008, pp. 624-628.
[28] X. Li, K. Dam, Comparing particle swarms for tracking extrema in dynamic environments, in: IEEE Congress on Evolutionary Computation, Canberra,
Australia, 2003, pp. 1772-1779.
[29] J. Liang, Dynamic multi-swarm particle swarm optimizer, in: IEEE Swarm Intelligence Symposium, 2005, pp. 124-129.
[30] L. Liu, D. Wang, S. Yang, Compound particle swarm optimization in dynamic environments, in: Applications of Evolutionary Computing, Lecture Notes
in Computer Science, vol. 4974, 2008, pp. 616-625.
[31] L. Liu, S. Yang, D. Wang, Particle swarm optimization with composite particles in dynamic environments, I[EEE Trans. Syst. Man Cybern., Part B: Cybern.
PP (99) (2010) 1-15.
[32] S. Lucas, Cellz: a simple dynamical game for testing evolutionary algorithms, in: IEEE Congress on Evolutionary Computation, 2004, pp. 1007-1017.
[33] R. Lung, D. Dumitrescu, A collaborative model for tracking optima in dynamic environments, in: IEEE Congress on Evolutionary Computation,
Singapore, 2007, pp. 564-567.
[34] P. Melin, V. Herrera, D. Romero, F. Valdez, O. Castillo, Genetic optimization of neural networks for person recognition based on the Iris, Telkomnika 10
(2) (2012) 309-320.
[35] M. Minsky, The Society of Mind, Simon & Schuster, New York, 1986.
[36] A. Newell, H. Simon, GPS, a program that simulates human thought, in: E.A. Feigenbaum,]. Feldman (Eds.), Computers and Thought, McGraw-Hill, New
York, 1963, pp. 279-293.
[37] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Morgan Kaufmann, San Mateo, CA, 1988.
[38] D. Poole, A. Mackworth, R. Goebel, Computational Intelligence: A Logical Approach, Oxford University Press, New York, 1998.
[39] K. Stanley, B. Bryant, R. Miikkulainen, Real-time neuroevolution in the NERO video game, IEEE Trans. Evol. Comput. 9 (6) (2005) 653-668.

http://refhub.elsevier.com/S0020-0255(15)00005-5/h0005
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0005
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0005
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0010
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0010
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0015
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0015
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0020
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0020
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0020
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0035
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0045
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0045
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0050
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0060
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0060
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0065
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0065
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0075
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0075
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0080
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0080
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0090
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0105
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0105
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0105
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0105
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0110
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0110
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0115
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0125
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0155
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0155
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0170
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0170
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0175
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0175
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0180
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0180
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0180
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0180
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0180
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0185
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0185
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0190
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0190
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0195

H. Mujtaba et al./ Information Sciences 302 (2015) 33-49 49

[40] J. Teich, Pareto-front exploration with uncertain objectives, in: E. Zitzler et al. (Eds.), Evolutionary Multi-Criterion Optimization, LNCS, vol. 1993,
Springer-Verlag, Berlin, Germany, 2001, pp. 314-328.

[41] D. Weld,]. Kleer, Readings in Qualitative Reasoning About Physical Systems, Morgan Kaufmann, San Mateo, CA, 1988.

[42] G. Yannakakis,]. Hallam, A generic approach for obtaining higher entertainment in predator/prey computer games,]. Game Develop. 1 (3) (2005) 23—
50.

[43] G.Yannakakis, J. Levine,]. Hallam, Emerging cooperation with minimal effort: rewarding over mimicking, IEEE Trans. Evol. Comput. 11 (3) (2007) 382-
396.

[44] X. Yao, Evolutionary Computation—Theory and Applications, World Scientific, Singapore, 1999.

[45] L. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 1 (1978) 3-28.

[46] L. Zadeh, Fuzzy sets, Inf. Control 8 (1965) 338-353.

http://refhub.elsevier.com/S0020-0255(15)00005-5/h0200
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0200
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0200
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0200
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0205
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0205
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0210
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0210
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0215
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0215
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0220
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0220
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0225
http://refhub.elsevier.com/S0020-0255(15)00005-5/h0230

	Detecting change and dealing with uncertainty in imperfect evolutionary environments
	1 Introduction
	2 Related work
	3 Coping with imperfection
	4 Wonderland – an imperfect evolutionary environment
	4.1 Entities in the environment
	4.1.1 Humanoids
	4.1.2 Terminals
	4.1.3 Creatures

	4.2 Phases in the environment
	4.2.1 Acquisition
	4.2.2 Survival
	4.2.3 Hunting

	5 Experimental setup
	6 Experimental results and discussion
	6.1 Perfect environment
	6.2 Coping with imperfection
	6.3 Dealing with repetitive chaotic imperfect environment
	6.4 Adding a new dimension to learning

	7 Conclusion
	Acknowledgement
	References

